Магический квадрат что это
Магический квадрат
Тема магического квадрата очень интересна школьникам, поэтому эту тему можно использовать для увлечения детей математикой.
Определение магического квадрата
Магический квадрат — это квадратная — таблица
целых чисел от 1 до
, удовлетворяющая следующим условиям:
, (1)
где
Простыми словами магический квадрат — это квадратная матрица (таблица) чисел, сумма который по вертикали, горизонтали и диагонали равна одному и тому же числу.
Как выглядит магический квадрат
Давайте разберемся, что это означает. Возьмем магический квадрат , то есть квадрат имеет 4 столбца и 4 строчки и выглядит так:
Для этого квадрата найдем магическое число:
Таким образом сумма каждой строчки магического квадрата должна быть 34, каждого столбца, а также любой диагонали.
Древние магические квадраты
Однако, расстановка чисел в магическом квадрате не обязательно будет однозначной. Например, посмотрите два магических квадрата размером :
Первый магический квадрат:
7 | 12 | 1 | 14 |
2 | 13 | 8 | 11 |
16 | 3 | 10 | 5 |
9 | 6 | 15 | 4 |
Этот квадрат был впервые найден в Индии, и трактовался, как дьявольский квадрат, датируется 11 веком. В действительности очень интересно узнать, откуда люди решили, что искомая сумма числе по строке, по столбцу или по диагонали должна быть именно 34?
А вот еще один магический квадрат размера . Этот квадрат уже из 16 века. Этот квадрат был обнаружен на гравюре, которую создал Альберт Дюрер и назвал ее «Меланхолия I». Поэтому квадрат называют «магический квадрат Дюрера». Гравюра была написана в 1514 году и три числа внизу указывают год ее создания.
Известно более 48 видов магических квадратов размера .
Минимально возможные суммы магического квадрата
Постоянные значения M суммы магических квадратов имеют минимальное значение (для положительных ненулевых целочисленных значений):
Для размера 3×3 минимальная сумма равна 15, для 4×4 — 34, для 5×5 — 65, для 6×6 — 111, затем 175, 260, …
Все, что меньше, вынуждает использовать отрицательные числа или дроби (не целые числа) для решения магического квадрата.
Магический квадрат Франклина восьмого порядка
Квадрат Франклина — это панмагический квадрат с магической постоянной 260. Интересный квадрат с множеством свойств. Рекомендую прочитать статью о нем: http://klassikpoez.narod.ru/franklin.htm
52 | 61 | 4 | 13 | 20 | 29 | 36 | 45 |
14 | 3 | 62 | 51 | 46 | 35 | 30 | 19 |
53 | 60 | 5 | 12 | 21 | 28 | 37 | 44 |
11 | 6 | 59 | 54 | 43 | 38 | 27 | 22 |
55 | 58 | 7 | 10 | 23 | 26 | 39 | 42 |
9 | 8 | 57 | 56 | 41 | 40 | 25 | 24 |
50 | 63 | 2 | 15 | 18 | 31 | 34 | 47 |
16 | 1 | 64 | 49 | 48 | 33 | 32 | 17 |
Магический квадрат Ло-Шу
Этот квадрат не относится к математике, а относится к китайской метафизике, используется в Фен-Шуй.
Бимагические и тримагические квадраты
Бимагическим квадратом называется квадрат, который остается магическим тогда, когда мы заменяем все его числа квадратами этих чисел.
Паскаль написал небольшой трактат и би- и три- магических квадратах.
Тримагическим квадратом называется квадрат, который остается магическим тогда, когда мы заменяем все его числа кубами этих чисел.
Бимагические квадрат размером 128 x 128 был обнаружен в 1905 году. В 2002 году, немцу Уолтеру Трампу удалось построить тримагический квадрат 12 x 12 и это минимальное измерение, которое возможно для этого вида магического квадрата.
История и современное применение
Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.
В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.
В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.
С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.
Квадрат нечётного порядка
Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.
Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:
Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.
Одинарная чётность
Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.
Вычисление магической константы
Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.
Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.
Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.
Дальнейшие действия
Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.
Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:
В блоках А и D на этой стадии решения сумма в строках и столбиках будет отличаться от постоянной. Чтобы это исправить, некоторые числа меняют местами между собой.
Алгоритм действий:
Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.
Двойной порядок
Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.
Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.
В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:
Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.
Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:
По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.
Магический квадрат что это
Предмет математики настолько серьезен, что нужно не упускать случая делать его немного занимательным.
§ 1. Магические квадраты. Исторические сведения
Среди различных занимательных вопросов теории чисел одним из интереснейших являются вопросы, связанные с магическими (волшебными) квадратами.
Тайна древнего талисмана
Еще до своего появления в Европе они существовали века и десятки веков. Неизвестно, какая из древних цивилизаций была их родиной, неизвестна страна, неизвестен век, даже тысячелетие нельзя установить точно. Известно только, что эти талисманы появились до нашей эры и что их родиной был Древний Восток.
С незапамятных времен, научившись считать, люди познали меру количества – число. Вглядываясь в сочетания чисел, они с изумлением увидели, что числа имеют какую-то самостоятельную жизнь, удивительную и полную тайны; тайны необъяснимой и поэтому загадочной и многозначительной.
Оказалось, что, складывая различные числа, можно получить одно и то же число. Оказалось также, что, располагая эти числа правильными рядами, один под другим, в случае удачи, можно, складывая числа слева направо и сверху вниз, каждый раз получать одно и то же число. Наконец, кто-то придумал разделить числа линиями так, что каждое число оказалось в отдельной клетке. Так посвященные увидели квадрат, населенный числами, неизвестно что сулящий его владельцу, но, конечно, обладающий магической силой. Квадрат можно было резцом высечь на камне, тростниковым камышом написать на пергаменте, кончиком кисти, смоченным в растертой туши, нарисовать на бумаге, рыхлой и слабой.
Квадрат можно было продать верующим. Зашитый в ладанку, он становился амулетом и (конечно!) защитой его владельца от всякого зла.
В Китае квадрат 3х 3 называют Ло-Шу. И по сей день его можно увидеть на амулетах, которые носят в Восточной Азии и в Индии, и на многих пассажирских судах, где он украшает крышки столиков для карточных игр.
Некоторые представления о том, каких фантастических размеров достигали сочинения о магических квадратах (предмете, не имеющем сколько-нибудь принципиального значения), можно получить из того факта, что французский трактат на эту тему, выпущенный в 1838 году, когда о магических квадратах было известно намного меньше, чем теперь, вышел в трех объемистых томах.
С давних времен и поныне исследование магических квадратов процветало как своеобразный культ, часто не без мистического тумана. Среди лиц, занимавшихся их изучением, были и известные математики, как Артур Кели и Освальд Веблен, Леонард Эйлер и такие любители, как, например, Бенджамин Франклин.
Магический квадрат – это квадрат, разделенный на клетки (их количество одинаково по горизонтали и вертикали). Клетки заполнены числами от 1 до n 2 (n – порядок квадрата, то есть количество клеток по горизонтали или по вертикали) так, что сумма чисел во всех горизонтальных, вертикальных рядах и на главных диагоналях равна одному и тому же числу. Это число называется магической суммой (постоянной) квадрата и вычисляется по формуле:
Магических квадратов порядка 2 не существует, а порядка 3 существует только один (если не считать магических квадратов, получающихся из него при поворотах и отражениях), постоянная которого равна 15.
Как только переходим к порядку 4, сложность магических квадратов резко возрастает. Если и на этот раз не считать различными квадраты, которые можно перевести друг в друга поворотами и отражениями, то различных магических квадратов будет ровно 880 типов, причем многие из них будут даже «более магическими», чем это требуется по определению магического квадрата.
В начале XVI века магический квадрат был увековечен в искусстве. Знаменитый немецкий художник и гравер Альбрехт Дюрер выпустил в 1514 году гравюру, названную им «Меланхолия». На заднем плане гравюры, над фигурой крылатой женщины в одежде горожанки, помещен магический квадрат четвертого порядка.
Во времена Дюрера меланхолический темперамент считался свойственным творческому гению, он был уделом ученых мужей, «чья бледность – печать глубокой мысли». Прекрасная женщина Меланхолия на гравюре Дюрера, возможно, олицетворяет гений человеческой мысли, человеческого труда. Именно ему (гению) угрожает планета меланхоликов Сатурн.
Астрологи эпохи Возрождения связывали магические квадраты четвертого порядка с Юпитером. Такие квадраты считались действенным средством от меланхолии (поскольку Юпитер и Сатурн, если верить астрологам, враждовали между собой).
Вот поэтому в правом верхнем углу гравюры Дюрера изображен магический квадрат именно четвертого порядка.
Дюреровский квадрат симметричен, так как сумма любых двух входящих в него чисел, расположенных симметрично относительно его центра, равна 17.
Способ построения симметричных квадратов очень прост: вписать по порядку числа от 1 до 16 в клетки квадрата 4 ´ 4, а затем поменять местами числа, расположенные на главных диагоналях, относительно центра, и симметричный квадрат готов.
Дюрер переставил у своего квадрата два соседних столбца (что не повлияло на свойства квадрата) так, что числа в двух средних клетках нижней строки стали указывать дату создания гравюры: 1514.
Древнейший из дошедших до нас квадратов четвертого порядка был обнаружен в надписи XI или XII века, найденной в Кхадружен (Индия). Этот магический квадрат относится к разновидности так называемых «дьявольских» квадратов.
Так что же определяет интерес к магическим квадратам в наше время?
А. Обри: «. ценность теории определяется не только возможностью ее практического использования, для которого она разработана, но также ее способностью воспитывать наш ум, доставлять ему питание, поддерживающее его жизнь, везде отыскивать новые истины и выяснять их значение без помощи извне. С этой точки зрения изучение магических квадратов, не требуя глубоких знаний, представляет собой превосходную умственную гимнастику, развивающую способность понимать идеи разрешения, сочетания, симметрии, обобщения и т. д. Можно сказать, что эта умственная гимнастика включает такие теоретические построения, занимаясь которыми упражняется ум.
§ 2. Классические алгоритмические методы построения магических квадратов
2.1. Индийский метод построения магических квадратов нечетного порядка
На рисунке изображен магический квадрат третьего порядка. Для ясности на этом рисунке заполнены также некоторые клетки вне основного квадрата.
Магический квадрат — виды, правила и примеры решения
Среди поклонников логических игр большой популярностью пользуется магический квадрат. Он представляет собой таблицу, заполненную особым образом цифрами. Причём сумма чисел одинакова по всем направлениям. Эту величину принято называть константой. Существует множество вариантов таких головоломок разной степени сложности.
История и современное применение
Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.
В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.
В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.
С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.
Квадрат нечётного порядка
Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.
Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:
Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.
Одинарная чётность
Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.
Вычисление магической константы
Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.
Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.
Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.
Дальнейшие действия
Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.
Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:
В блоках А и D на этой стадии решения сумма в строках и столбиках будет отличаться от постоянной. Чтобы это исправить, некоторые числа меняют местами между собой.
Алгоритм действий:
Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.
Двойной порядок
Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.
Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.
В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:
Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.
Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:
По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.