Математическое ожидание для чего
Математическое ожидание
В теории вероятностей одну из основных ролей играет математическое ожидание. Математическое ожидание – это усредненная оценка случайного значения. Если представить значения вероятностей в виде графика, то математическое ожидание будет являться некоторым центром массы изображенной на графике фигуры.
Вычисляется математической ожидание по несложной формуле:
Что нам дает знание того, где находится этот центр масс? В теории вероятностей строго доказывается, что среднее значение случайной величины при большом количестве испытаний стремится к математическому ожиданию. Таким образом, если количество испытаний велико, то среднее значение будет равно матожиданию, т.е. матожидание является прогнозом среднего значения случайной величины.
Проще все это понять будет на примерах. К примеру, если мы будем бросать простой шестигранный игральный кубик, записывать выпавшие значения и вычислять среднюю величину выпавших значений (складываем полученные значения и делим результат на число этих значений), то при большом числе испытаний мы получим число 3.5. То же самое значение мы получим и посчитав математическое ожидание. Для подсчета нужно брать, что:
Математическое ожидание можно применять для оценки прибыльности какой-либо деятельности или, к примеру, игры. Для этого вероятность выигрыша умножается на сумму самого выигрыша и из полученного результата вычитается вероятность проигрыша умноженная на сумму проигрыша. Полученное число будет равно величине среднего выигрыша за один подход при достаточно долгой игре. Т.е. если играем 1000 раз в игре с матожиданием выигрыша равном 5 рублям, то в результате игры мы должны выиграть сумму примерно равную 5 000 рублей.
В торговле на рынке ФОРЕКС математическое ожидание чаще всего применяют при прогнозировании доходности какой-либо торговой стратегии или при прогнозировании доходов трейдера на основе статистических данных его предыдущих торгов.
Основы теории вероятностей. Математическое ожидание величины.
Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.
К таким величинам относят в первую очередь математическое ожидание и дисперсия.
Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .
Самым простым способом математическое ожидание случайной величины Х(w), находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве
Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей РХ величины X:
где — множество всех возможных значений X.
при этом интегрируемость X в смысле (*) соответствует конечности интеграла
если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х), то
при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.
Свойства математического ожидания случайной величины.
Алгоритм вычисления математического ожидания.
Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.
2. Складываем произведение каждой пары xipi.
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.
Пример: Найти математическое ожидание по формуле:
Найти математическое ожидание по формуле:
Математическое ожидание M[X] равно:
Случайные величины. Дискретная случайная величина.
Математическое ожидание
Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это такое:
Случайной называют величину, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.
Случайные величины, как правило, обозначают через *, а их значения – соответствующими маленькими буквами с подстрочными индексами, например,
.
* Иногда используют , а также греческие буквы
Пример встретился нам на первом же уроке по теории вероятностей, где мы фактически рассмотрели следующую случайную величину:
– количество очков, которое выпадет после броска игрального кубика.
В результате данного испытания выпадет одна и только грань, какая именно – не предсказать (фокусы не рассматриваем); при этом случайная величина может принять одно из следующий значений:
.
– количество мальчиков среди 10 новорождённых.
Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:
, либо
мальчиков – один и только один из перечисленных вариантов.
И, дабы соблюсти форму, немного физкультуры:
– дальность прыжка в длину (в некоторых единицах).
Её не в состоянии предугадать даже мастер спорта 🙂
Тем не менее, ваши гипотезы?
Коль скоро речь идёт о множестве действительных чисел, то случайная величина может принять несчётно много значений из некоторого числового промежутка. И в этом состоит её принципиальное отличие от предыдущих примеров.
Таким образом, случайные величины целесообразно разделить на 2 большие группы:
1) Дискретная (прерывная) случайная величина – принимает отдельно взятые, изолированные значения. Количество этих значений конечно либо бесконечно, но счётно.
…нарисовались непонятные термины? Срочно повторяем основы алгебры!
2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.
Примечание: в учебной литературе популярны аббревиатуры ДСВ и НСВ
Сначала разберём дискретную случайную величину, затем – непрерывную.
Закон распределения дискретной случайной величины
– это соответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:
Довольно часто встречается термин ряд распределения, но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».
А теперь очень важный момент: поскольку случайная величина обязательно примет одно из значений
, то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:
или, если записать свёрнуто:
Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:
Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:
Некоторая игра имеет следующий закон распределения выигрыша:
Найти
…наверное, вы давно мечтали о таких задачах 🙂 Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля.
Решение: так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу, а значит, сумма их вероятностей равна единице:
Разоблачаем «партизана»:
– таким образом, вероятность выигрыша
условных единиц составляет 0,4.
Контроль: , в чём и требовалось убедиться.
Ответ:
Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности, теоремы умножения / сложения вероятностей событий и другие фишки тервера:
В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.
Решение: как вы заметили, значения случайной величины принято располагать в порядке их возрастания. Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.
Всего таковых билетов 50 – 12 = 38, и по классическому определению:
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.
С остальными случаями всё просто. Вероятность выигрыша рублей составляет:
И для :
Проверка: – и это особенно приятный момент таких заданий!
Ответ: искомый закон распределения выигрыша:
Следующее задание для самостоятельного решения:
Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины
– количества попаданий после 2 выстрелов.
…я знал, что вы по нему соскучились 🙂 Вспоминаем теоремы умножения и сложения. Решение и ответ в конце урока.
Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики.
Математическое ожидание дискретной случайной величины
Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения
с вероятностями
соответственно. Тогда математическое ожидание
данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:
или в свёрнутом виде:
Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:
очка
В чём состоит вероятностный смысл полученного результата? Если подбросить кубик достаточно много раз, то среднее значение выпавших очков будет близкО к 3,5 – и чем больше провести испытаний, тем ближе. Собственно, об этом эффекте я уже подробно рассказывал на уроке о статистической вероятности.
Теперь вспомним нашу гипотетическую игру:
Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:
, таким образом, математическое ожидание данной игры проигрышно.
Не верь впечатлениям – верь цифрам!
Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры 🙂 Ну, может, только ради развлечения.
Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.
Творческое задание для самостоятельного исследования:
Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?
Справка: европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино
Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь дисперсия, о которой мы узнаем во 2-й части урока.
Но прежде будет полезно размять пальцы на клавишах калькулятора:
Случайная величина задана своим законом распределения вероятностей:
Найти , если известно, что
. Выполнить проверку.
Тогда переходим к изучению дисперсии дискретной случайной величины, и по возможности, ПРЯМО СЕЙЧАС!! – чтобы не потерять нить темы.
Пример 3. Решение: по условию – вероятность попадания в мишень. Тогда:
– вероятность промаха.
Составим – закон распределения попаданий при двух выстрелах:
– ни одного попадания. По теореме умножения вероятностей независимых событий:
– одно попадание. По теоремам сложения вероятностей несовместных и умножения независимых событий:
– два попадания. По теореме умножения вероятностей независимых событий:
Проверка: 0,09 + 0,42 + 0,49 = 1
Ответ:
Примечание: можно было использовать обозначения – это не принципиально.
Пример 4. Решение: игрок выигрывает 100 рублей в 18 случаях из 37, и поэтому закон распределения его выигрыша имеет следующий вид:
Вычислим математическое ожидание:
Таким образом, с каждой поставленной сотни игрок в среднем проигрывает 2,7 рубля.
Пример 5. Решение: по определению математического ожидания:
поменяем части местами и проведём упрощения:
таким образом:
Выполним проверку:
, что и требовалось проверить.
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам