asn что это такое

Asn что это такое

Смотреть что такое «ASN» в других словарях:

ASN.1 — (англ. Abstract Syntax Notation One) в области телекоммуникаций и компьютерных сетей язык для описания абстрактного синтаксиса данных (ASN.1), используемый OSI. Стандарт записи, описывающий структуры данных для представления, кодирования,… … Википедия

ASN — steht für: Abfallschlüsselnummer Access Service Network Advance Shipping Notice Aktives Semantisches Netz American Society of Nephrology ASN Technology Group, eine chinesische F E Firma Assisted Satellite Navigation Atlantic Steam Navigation… … Deutsch Wikipedia

asn- — *asn germ., Substantiv: nhd. Lohn; ne. reward (Neutrum); Rekontruktionsbasis: got., ae., afries., as., ahd.; Etymologie: idg. *esen … Germanisches Wörterbuch

ASN — may mean:* Abstract syntax notation * Access Service Network * Adobe Solutions Network * Advanced Shipping Notice * American Society for Nutrition * American Society of Nephrology * American Society of Neuroimaging * The former ticker symbol for… … Wikipedia

Asn — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. <<>> Sigles d une seule lettre Sigles de deux lettres > Sigles de trois lettres … Wikipédia en Français

Asn — 〈Zeichen für〉 Asparagin * * * Asn: Symbol für ↑ Asparagin in Peptidformeln. * * * Asn, Asp NH2, Abkürzungen für Asparagin … Universal-Lexikon

Asn — Abreviatura de asparragina. Diccionario Mosby Medicina, Enfermería y Ciencias de la Salud, Ediciones Hancourt, S.A. 1999 … Diccionario médico

asn — simb. TS chim. asparagina … Dizionario italiano

Asn — английская аббревиатура аспарагина (см.) … Генетика. Энциклопедический словарь

ASN.1 — Die Abstract Syntax Notation One (ASN.1) ist eine Beschreibungssprache zur Definition von Datenstrukturen sowie Festlegungen zur Umsetzung von Datenstrukturen und Elementen in ein netzeinheitliches Format. Sie ist gemeinsamer Standard der ITU T… … Deutsch Wikipedia

ASN.1 — Pile de protocoles 7. Application 6. Présentation 5. Session 4. Tr … Wikipédia en Français

Источник

ASN.1 простыми словами (кодирование типа REAL)

Введение для Хабра

Приведённый ниже текст является на самом деле первыми двумя главами моей статьи «ASN.1 простыми словами». Так как сама статья достаточно большая по меркам Хабра я решил сначала проверить являются ли знания по кодированию простых типов востребованными на этом ресурсе. В случае положительной реакции аудитории я продолжу публикацию всех остальных глав.

Введение

Уже на протяжение достаточно большого периода мне приходится иметь дело с ASN.1. Мне посчастливилось работать как в сфере создания криптографических программ, так и в сфере телекоммуникаций. И в той, и в другой сфере изначально крайне активно и повсеместно используется стандарт ASN.1.

Однако и в процессе создания программ криптографической направленности, и в процессе создания программ для телекоммуникационной отрасли я постоянно встречался с одним и тем же мнением — ASN.1 это сложный и не понятный формат, а следовательно для кодирования / декодирования лучше применять сторонние компиляторы (а иногда даже другие стандарты кодирования передаваемой информации).

Одной из причин по которой сложилась ситуация, когда подавляющее большинство разработчиков программ считают стандарт ASN.1 сложным, это отсутствие книг по данному вопросу. Да, не смотря на почтенный возраст данного стандарта, множество свободно распространяемых компиляторов и различных статей, всё ещё крайне мало книг (или даже статей в Интернете) где бы простым и понятным языком, с большим количеством примеров, прояснялись вопросы кодирования простых типов ASN.1.

Исправляя сложившуюся ситуацию данная статья отчасти служит неким пособием, помогающим даже не сталкивавшемуся ранее с этим форматом человеку разобраться в тонкостях кодирования ASN.1. Статья охватывает вопросы исключительно только кодирования простых (не составных) типов — REAL, INTEGER, OBJECT IDENTIFIER, все виды строк, BOOLEAN, NULL, SEQUENCE, SET. В статье приводится подробнейшее объяснение всех тонкостей кодирования для каждого из типов, также приводятся подробные примеры, поясняющий тонкости кодирования для данного типа. В отдельном файле, прилагающемся к данной статье, можно найти код на С++, формирующий все примеры из статьи. Кроме того в этом файле с примерами приводятся дополнительные материалы, не рассмотренные в рамках данной статьи. Все материалы статьи опираются на последний стандарт ASN.1 от 2008 года, все составляющие под-стандарты которого можно скачать одним файлом по ссылке http://www.itu.int/rec/T-REC-X.680-X.693-200811-I/en. Если это специально не оговаривается, то приведенные в статье примеры кодируют типы в стандарте ASN.1 BER (Basic Encoding Rules).

В большинстве пособий и книг по ASN.1 изучение кодирования начинается с простейших, не сложных, типов и заканчивается наисложнейшими. В этой статье порядок будет строго противоположный — читателю сначала будет предложено изучить кодирование сложных типов, и только потом постепенно перейдём к изучению простейших. Это позволит однажды усвоив методы кодирования для сложного типа просто и быстро понять методику кодирования более простого.

Глава 1. Общие правила кодирования ASN.1

Первично всё же необходимо пояснить некоторые основы кодирования в формате ASN.1.

Для начала поясним для чего же создавался этот стандарт. В мире существует множество различных компьютеров. И кроме того существует множество стандартов представления данных в этих компьютерах. ASN.1 создавался как некий общий стандарт, позволяющий описывать произвольную информацию, которая бы понималась любым компьютером, имеющим представление об этом стандарте. В стандарте ASN.1 поэтому предъявляются жесткие правила кодирования даже на уровне отдельных битов информации, а также взаимного их расположения. Дополнительно нужно сказать, что стандарт ASN.1 кодирует информацию не в виде текста, а виде двоичных последовательностей. Сейчас уже появились вариации форматов кодирования, позволяющие представлять данные и в виде текста (XML), но обзор этих форматов выходит за рамки данной статьи. Здесь мы рассмотрим только самое сложное — двоичное кодирование (формат ASN.1 BER — Basic Encoding Rules).

Данные закодированные в формате ASN.1 представляют из себя последовательность байт (или «октетов»), которые идут один за другим, без каких либо разрывов. Последовательность закодированную в ASN.1 можно передавать по линиям связи, сохранять в файл — блок закодированной информации в ASN.1 уже содержит необходимое описание его общей длины и содержимого.

Для возможности подобного описания содержащейся в закодированном блоке информации применяется определенная общая структура каждого блока. Каждый блок содержит минимум 3 обязательных части (в отдельных случаях остаются только первые два блока, но эти случаи описываются отдельно):

Кроме этого может быть ещё 4-ая, не обязательная часть — часть октетов окончания значения блока (несколько октетов). Про эту часть будет рассказано несколько позже.

Перейдём к описанию каждой части ASN.1-кодированного блока.

Часть идентификатора блока состоит минимум из одного октета. Формат этого первого октета строго фиксирован.

В случае если идентификатор типа для блока находится в диапазоне значений 0-30 идентификационный блок состоит только из одного октета. Если же идентификатор типа для блока имеет значение 31 и выше, то в битах 5-1 выставляются все 1, а в последующих октетах кодируется нужный номер. Номер идентификатора типа кодируется как без знаковое целое, разложенное по основанию 128. В каждом октете, кодирующем идентификатор типа для блока, старший бит должен быть равен 1, кроме самого крайнего, завершающего октета (способ кодирования полностью совпадает со способом, которым кодируются SID для OBJECT IDENTIFIER, см. ниже).

Часть общей длины блока содержит минимум 1 октет, кодирующий длину значения, которое содержит блок (именно только длину блока, содержащего закодированное значение, а не общую длину всего закодированного блока вместе с идентификатором блока и частью общей длины!). Длина блока в простейшем случае кодируется как без знаковое целое, разложенное по основанию 128. Бит 8 (старший бит) в этом случае является дополнительным флагом. Если общая длина закодированного блока превышает 128, то старший бит первого октета части общей длины блока должен быть установлен в 1, а следующие 7 бит должны кодировать без знаковое целое значение количества последующих октетов, которые и будут кодировать реальную общую длину блока.

Например если общая длина блока равна L = 201 то она будет кодироваться с помощью двух октетов:

Кроме явного задания общей длины блока возможно определять окончание данного блока непосредственно в процессе декодирования блока. Это важно, когда при начальном кодировании блока не ясно, сколько именно октетов он будет содержать (потоковое кодирование). В этом случае первый октет части общей длины блока должен быть равен 80 (старший бит 8 равен 1 и все остальные биты равны 0). Окончание всего блока определяется по наличию в блоке значения двух последовательно идущих октетов 00 00.

Глава 2. Кодирование типа REAL

Общее описание типа:

В отличие от обычного, машинного, представления чисел с плавающей запятой (IEEE 754) в ASN.1 тип REAL практически не ограничен по размеру как мантиссы (мантисса может состоять из практически не ограниченного числа октетов и представлять сколь угодно большое число), так и по размеру экспоненты (значение экспоненты также может состоять из произвольного количества октетов). Ограничения при кодировании накладываются только на значение «основания»: в качестве «основания» могут выбраны только числа 10, 2, 8 или 16.

Для кодирования типа REAL применяются следующие три основных блока:

В служебной информационном октете содержится следующая информация:

Значение экспоненты числа кодируется целым числом, состоящим из произвольного количества октетов. Здесь необходимо сделать маленькое отступление и рассказать как именно в ASN.1 кодируются как положительные целые числа, так и отрицательные.

Рассмотренным выше способом можно закодировать сколь угодно большое целое положительное число. Однако как быть с кодированием отрицательных целых значений? Именно для кодирования отрицательных целых применяется специальная процедура кодирования значений.

Для примера опять возьмем число 32639, но теперь пусть оно будет отрицательным (-32639). Кодирование отрицательных целых построено так, что на самом деле кодируется не одно, а два целых значения — одно основное значение и другое целое значение, которое нужно вычесть из основного значения. То есть при декодировании для получения закодированного отрицательного числа просто вычислить результат (x — y). Как видно из этой простейшей формулы если значение «x» меньше, чем значение «y» то результат будет меньше нуля (то есть отрицательное число).

Вышеупомянутые два числа (основное число и число, которое надо вычесть из основного) формируются по следующим правилам:

Перейдём к кодированию конкретного числа из примера (-32639). Так как число, которое надо вычесть из основного, должно быть больше основного числа, то кодирование отрицательных целых чисел начинается именно с выбора этого вычитаемого. Так как по правилам это вычитаемое должно разлагаться по основанию 256 так, чтобы все биты, представляющие индексы при соответствующих степенях 256, были равны 0 кроме первого бита, то ряд возможных вычитаемых представляет собой лидирующий октет 80 (1000 0000) и какое-то количество октетов 00, следующих за ним. То есть в качестве вычитаемых могут использоваться: 80 (12810), 80 00 (3276810), 80 00 00 (838860810) и т.п. Для кодирования нашего числа «-32639» выберем первое подходящее вычитаемое, большее кодируемого числа по модулю (то есть большее чем число 32639). Ближайшее такое число равно 32768 (80 00).

А теперь приятная информация — в современных компьютерных системах целые числа (как положительные, так и отрицательные) автоматически кодируются и хранятся именно в том формате, который и был описан выше. То есть для кодирования целых чисел в ASN.1 не нужно выполнять вообще никаких действий — просто нужно сохранить их байт за байтом и всё.

Значение мантиссы числа представляет собой всегда без знаковое целое. То есть мантисса числа, кодированного в ASN.1, всегда является положительным числом. Для того чтобы кодировать отрицательные числа с плавающей точкой в ASN.1 предусмотрен отдельный бит (бит 7) в служебном октете (см. выше).

Мантисса кодируется как последовательность байт представляющих собой коэффициенты разложения начального числа по основанию 256. То есть если мантисса числа в десятичном виде равна 32639 то значит закодированное число будет состоять из двух октетов 7F 7F (3263910 = 127*256 1 + 127*256 0 = 7F*FF 1 + 7F*FF 0 ).

Примеры кодирования чисел REAL в ASN.1 в двоичном представлении:

Следовательно все число с плавающей точкой из нашего примера (при условии «нормализации» мантиссы) будет кодироваться следующей последовательностью октетов:

Кроме кодирования всех частей числа с плавающей точкой в виде двоичного представления в разложении по различным степеням двойки дополнительно есть прекрасная возможность представлять подобные числа в ASN.1 в обычном строковом виде, в каком мы обычно и видим такие числа. В этом случае считается, что число кодируется с основанием 10.

При кодировании по основанию 10 дополнительно вводится понятие «форм представления числа». Всего таких форм 3 (формы NR1, NR2 и NR3) и описываются они в отдельном стандарте ISO 6093. Так как этот стандарт является платным, то для ознакомления с формами представления чисел можно порекомендовать «предка» ISO 6093 — стандарт ECMA-63, который легко может быть найден в Интернете.

При кодировании числа с плавающей точкой в представлении разложения по основанию 10 в служебном информационном октете указывается код формы представления числа (01, 02 или 03 для соответствующих форм), а сразу после служебного информационного октета указываются коды символов, представляющих кодированное число. Разрешены следующие коды символов:

Все остальные символы запрещены к кодированию (при декодировании символов, отличных от приведенных выше, декодер ASN.1 обязан выдать ошибку).

Примеры кодирования числа с плавающей точкой в десятичной форме:

Кроме обычных чисел ASN.1 позволяет кодировать также и ряд «специальных» чисел:

Все специальные числа кодируются только одним служебным информационным октетом, без указания октетов для экспоненты и мантиссы:

UPDATE: список последующих глав моей статьи

UPDATE #3: Возможно кто-то упустил, но вот тут находится реализация на С++ ASN.1 coder/decoder с поддержкой типа REAL. А вот тут реализация на JavaScript, но пока без типа REAL.

Источник

ИТ База знаний

Полезно

— Онлайн генератор устойчивых паролей

— Онлайн калькулятор подсетей

— Руководство администратора FreePBX на русском языке

— Руководство администратора Cisco UCM/CME на русском языке

— Руководство администратора по Linux/Unix

Навигация

Серверные решения

Телефония

FreePBX и Asterisk

Настройка программных телефонов

Корпоративные сети

Протоколы и стандарты

10 онлайн инструментов для работы с ASN

Autonomous System Number

Онлайн курс по Linux

Мы собрали концентрат самых востребованных знаний, которые позволят тебе начать карьеру администратора Linux, расширить текущие знания и сделать уверенный шаг к DevOps

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

С увеличением числа устройств, подключенных к сети и увеличиваются и уязвимости в сети. При таком раскладе, понять, что такое ASN и принципы его работы стало очень важным.

Чтобы управлять огромным повседневным потоком данных в Интернете, регулирующие органы, такие как как IANA (Internet Assigned Numbers Authority) и другие перешли от IPv4 к IPv6. Эта схема адресации располагает достаточным количеством адресов, которые можно назначить устройствам в сети.

При этом ASN является методом управления таком количеством адресов.

Что такое ASN?

Автономная система (AS) представляет собой группу из нескольких IP-сетей, имеющих отдельную политику маршрутизации. Чтобы эти автономные системы могли взаимодействовать друг с другом, им нужен уникальный номер или идентификатор.

Хотя открытый ASN необходим, когда системы обмениваются данными в Интернете, частный ASN необходим для связи только с одним поставщиком через протокол пограничного шлюза (BGP).

IANA присваивает эти ASN автономным системам через региональные интернет-регистраторы (RIR), организации, отвечающей за управление номерами Интернета в конкретном регионе мира. Существует пять RIR:

Далее рассмотрим некоторые из лучших сервисов поиска ASN, скрипты и API для работы с ASN. Основной целью этих инструментов является проверка ASN для получения полной информации AS.

1. UltraTools

С помощью UltraTools легко можно получить информацию о любом ASN. Для этого достаточно ввести номер автономной системы, или название компании или же IP адрес принадлежащий интересующей организации.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

В ответе отображается вся необходимая информация об ASN конкретного IP-адреса, включая владельца IP-адреса, регистратора, регистрационные данные, максимальный диапазон для всех IP-адресов и т.д.

Например, если ввести Google, то получим следующую информацию:

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

2. APIC Whois Search

В базе данных Whois APNIc хранятся все данные об организациях, имеющих ASN и IP-адреса в этом регионе.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

Таким образом, с помощью APNIC Whois Search можно определить ASN и IP-адрес организации. Наряду с контактной информацией для каждой сети, эта база данных также показывает, когда и где были выданы ресурсы.

Для поиска нужной информации достаточно нажать «Search APNIC Whois«. Браузер перенаправляет на другую страницу, где можно ввести IP-адрес и получить интересующую информацию.

3. ASNLookup

ASNLookup предоставляет удобный интерфейс для поиска IP адресов конкретной организации с помощью ASN.

Чтобы получить данные введите название организации.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

ASNLookup также бесплатно предлагает конечную точку API, которую можно использовать для извлечения данных в формате JSON. Это полезно, если вы хотите интегрировать его с приложением или инструментом.

Например, мы ввели «Rostelecom» в качестве входных данных, поэтому в нем отображается следующий вывод. Можно даже загрузить результаты и сохранить их для справки.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

4. Spyse ASN Lookup

Spyse ASN Lookup предлагает простую в использовании платформу без сложной терминологии. С помощью этого инструмента можно получить более широкое представление о различных уязвимостях организаций.

Spyse ASN Lookup выполняет регулярное сканирование Интернета для сбора полной информации об ASN. Он обеспечивает мгновенный доступ к данным и хранит их в своей базе данных, где эффективно организует их.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

Инструмент использует набор алгоритмов ручной работы для проверки собранных данных после завершения сканирования, чтобы можно было получать точные и обновленные данные. Он также предоставляет API для получения данных AS, где также можно объединить проекты с базой данных.

Вы также можете изучить диапазоны IPv4, связанные ASN и области AS, чтобы получить больше информации для сравнительного анализа.

5. MX Toolbox

Чтобы получить информацию ASN, MX Toolbox принимает в качестве входных данных имя AS или номер AS. Также по мере ввода номера или название AS отображаются все номера AS, соответствующие введенному названию.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

Таким образом, можно ввести IP-адрес, имя узла или имя домена для получения информации ASN. Если ввести ссылку, она направит вас к соответствующим данным или инструментам. Также можно просмотреть историю результатов в хронологическом порядке.

6. Hacker Target

Проверить ASN на наличие IP-адреса, чтобы получить информацию о конкретной AS можно с помощью Hacker Target. Просто введите ASN или IP-адрес организации в качестве входных данных и вернет соответствующие ASN, разделенные запятой.

В нем отображаются название организации, ее географическое положение и все связанные IP-адреса.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

С помощью средства поиска Hacker Target можно быстро проверить владельца определенного IP-адреса. Тем не менее, есть уловка, которую вы не должны забывать для организаций с их AS, расположенных на разных континентах.

Таким образом, если вы получаете IP-адрес AS, показанный в США, это не всегда означает, что система физически расположена с США.

Этот инструмент создан для оперативного поиска. Если используется его бесплатная версия, можно делать 100 запросов в день.

7. IPtoASN

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

Языки программирования, такие как Go и Rust, обеспечивают хорошую работу платформы IPtoASN. Операционная система OpenBSD с усовершенствованной технологией безопасности рассчитана для защиты IPtoASN в распределенной среде.

8. purplepee

Другим ресурсом, благодаря которому можно получить информацию об ASN является purplepee, сервис открытым исходным кодом. Кроме того, можно просматривать информацию о DNS-записях веб-сайта, заголовках HTTP, портах TCP и SSL-сертификатах.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

Его поисковый фильтр должен включать определенные ключевые слова, чтобы система точно знала, что искать. Между названием фильтра и значением не должен быть пробелов.

Например, если нужно выполнить поиск ASN определенной организации, скажем, Digital Ocean, то запрос должен выглядеть следующим образом:

Он возвращает всю информацию, включая IP-адрес, геолокацию, ASN CIDR, дату, код страны, реестр, описание, а также сертификат SSL и заголовок HTTP.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

9. IPWHOIS

IPWHOIS позволяет извлекать, а затем анализировать данные whois для IPv6 и IPv4 адресов. С помощью этого скрипта можно найти ASN, название веб-сайта или IP-адреса.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

Пакет написан на Python для синтаксического анализа и извлечения данных. Он может распарсить широкий диапазон полей в один стандартный словарь. Скрипт обеспечивает поддержку запросов RDAP, устаревших протоколов, интерфейса командной строки, опционально выделение цветом выходных данных.

10. IPinfo

Устали от решений на основе команд и по-прежнему нуждаются в данных ASN? К счастью, это возможно!

Используя удивительный API IPinfo можно легко получить всю информацию об ASN. Достаточно ввести ASN или IP-адрес и за считанные секунды получите всю необходимую информацию об ASN.

asn что это такое. Смотреть фото asn что это такое. Смотреть картинку asn что это такое. Картинка про asn что это такое. Фото asn что это такое

API возвращает выходные данные в формате JSON с информацией для префиксов IPv6 и IPv4. Эта информация состоит из идентификаторов, имен, блоков IP, стран и названий интернет-провайдеров.

Получая такие данные, вы можете получить информацию о подключении к Интернету, ограничениях данных и скорости посетителей. Можно также проверить, является ли конкретный IP-адрес бизнес-поставщиком, хостингом или потребителем.

Соберите всю эту информацию, чтобы спланировать, как вы можете расширить возможности пользователей. IPinfo является надежным, поскольку обеспечивает точные результаты и ежедневно обновляет имеющиеся данные.

Источник

Asn что это такое

Для октетов длины примитивного метода имеется два формата: короткий (один октет для длин 0-127) и длинный (2-127 октетов). Для короткой формы 8-ой бит октета всегда равен нулю. Для длинной формы восьмой бит первого октета всегда равен 1, биты 1-7 содержат код числа дополнительных октетов длины. Старшая цифра записывается первой.

Конструктивный метод с заданной длиной

Этот метод используется для простых строчных и структурированных типов, типов, производных от простых строчных типов, и некоторых других. Здесь октеты идентификатора и октеты длины имеют формат, идентичный используемому примитивным методом, за исключением того, что бит 6 первого октета идентификатора равен 1.

Конструктивный метод кодирования с незаданной длиной

Метод используется для простых строчных типов, структурированных типов и типов, полученных из простых и структурированных типов с помощью неявной пометки. Октеты идентификатора идентичны предшествующему. Октет длины содержит код 80. Два октета конца содержательной части содержат 00 00.

Нотация типов, помеченных неявно, имеет вид:

[[class] number] IMPLICIT Type

class = UNIVERSAL | APPLICATION | PRIVITE

Если имя класса отсутствует, тогда метка является контекстно-ориентированной. Такие метки могут появляться только в структурных компонентах или в типе CHOICE. Например:

PrivateKeyInfo ::= SEQUENCE <
version Version,
privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
privateKey PrivateKey,
attributes [0] IMPLICIT Attributes OPTIONAL >

Здесь исходным (порождающим) типом является Attributes, класс отсутствует (т.е. контекстно-ориентированный), а числовая метка равна нулю. Кодирование компоненты attributes величины PrivateKeyInfo осуществляется следующим образом.

Октеты идентификатора равны 80, если значение порождающей величины Attributes имеет конструктивное BER-кодирование. Октеты длины и содержимого строго соответствуют октетам порождающей величины Attributes.

Непосредственная (явная) пометка используется для опционных компонент SEQUENCE c порождающим типом ANY и для компонент version типа Certificate (X.509 и RFC-1114). Нотация типов, помеченных явно, имеет формат.

class = UNIVERSAL | APPLICATION | PRIVATE

ContentInfo ::= SEQUENCE <
ContebtType ContentType,
Content [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL >

Тип ContentInfo имеет опционную компоненту content с явной контекстно-ориентированной меткой. Здесь порождающим типом является ANY DEFINED BY contentType, класс отсутствует, а числовая метка в пределах класса равна 0.

Другим примером может являться тип Certificate [X.509], имеющий компоненту с явной контекстно-ориентированной меткой (ключевое слово EXPLICIT опущено).

Certificate ::= .
Version [0] Version DEFAULT v1988,
.

BER-кодирование величин, помеченных явно, является всегда конструктивным. Октеты содержимого идентичны соответствующим октетам порождающей величины. Например, BER-кодирование компоненты content величины ContentInfo имеет следующий вид.

Октеты идентификатора равны нулю, Октеты длины представляют длину BER-кодирования порождающей величины ANY DEFINED BY contentType.

Тип ANY обозначает произвольную величину произвольного типа, где произвольный тип возможно определен при регистрации идентификатора объекта или является целочисленным индексом. Нотация типа ANY имеет формат:

ANY [DEINED BY identifier ]

AlgorithmIdentifier ::= SEQUENCE <
algorithm OBJECT IDENTIFIER,
parameter ANY DEFINED BY algorithm OPTIONAL >

Здесь истинный тип компоненты parameter зависит от величины компоненты algorithm. Истинный тип будет определен при регистрации объекта величины идентификатора длякомпоненты algorithm.

Тип BIT STRING обозначает произвольные битовые последовательности произвольной длины (включая ноль). Тип BIT STRING используется для цифровых сигнатур типа ExtendedCertificate или Certificate [X.509]. Нотация BIT STRING имеет формат.

Например, тип SubjectPublicKeyInfo имеет компоненту типа BIT STRING:

SubjectPublicKeyInfo ::= SEQUENCE <
Algorithm AlgorithmIdentifier,
PublicKey BIT STRING >

BER-кодирование величины BIT STRING может быть примитивным или конструктивным. При примитивном кодировании первый октет содержимого несет в себе длину битовой строки в октетах. В последующих октетах записывается сама битовая последовательность. Процедура кодирования может включать в себя дополнение битовой строки до целого числа октетов нулями (если это необходимо). Строка делится на октеты.

При конструктивном кодировании октеты содержимого представляют собой соединение последовательности субстрок, только последняя из которых содержит код длины, выраженный в октетах. Например, при BER-кодировании значения BIT STRING «0111 1101 1001 1111 11» может быть представлена в одном из следующих видов, в зависимости от выбора схемы дополнения до целого числа октетов, от формата октетов длины и от метода кодирования примитивный/конструктивный).

Дополнение кодом «100000»

03 81 04 06 7D 9F C0

Длинная форма представления октетов длины

23 09
03 03 00 7D 9F
03 02 06 C0

Конструктивное кодирование «01111101 1001 1111″ +»11»

Этот тип служит для объединения одной или более альтернатив. Нотация типа CHOICE имеет формат.

BER-кодирование величины IA5String может быть примитивным или структурированным. При примитивном кодировании октеты содержимого представляют собой символы IA5 в ASCII-кодов. При конструктивном кодировании октеты содержимого представляют собой соединение ряда IA5-субстрок. Рассмотрим примеры представления значения IA5-строки «test1@rsa.com».

12 0D 74 65 73 74 31 40 72 73 61 2E 63 6F 6D

DER-кодирование12 81 0D 74 65 73 74 31 40 72 73 61 2E 63 6F 6DДлинная форма октетов длины32 13
12 05 74 65 73 74 31
12 01 40
12 07 72 73 61 2E 63 6F 6DКонструктивное
кодирование: «test1»
+ «@» +
«rsa.com»

DER-кодирование является всегда примитивным, октеты содержимого идентичны случаю BER-кодирования.

Тип INTEGER представляет любые целые числа (положительные, отрицательные или 0). Тип INTEGER используется для номеров версий, криптографических параметров (показателей, модулей) и типов RSAPublicKey, RSAPrivatKey, DHParameter PBEParameter. Нотация типа INTEGER имеет формат:

Идентификатору v1988 поставлено в соответствие значение 0. Тип Certificate RFC-1114 использует идентификатор v1988для присвоения значения по умолчанию компоненту version:

Certificate
version Version DEFAULT v1988,
.

BER-кодирование значения INTEGER является всегда примитивным. Октеты содержимого представляют значение целого по модулю 256 в форме дополнения по модулю 2. Старшая цифра является первой. Значение нуль кодируется одним октетом 00. Примеры BER-кодирования (совпадающего в данном случае с DER-кодированием) представлены в таблице 4.4.13.2.3.

Таблица 4.4.13.2.3. Примеры BER-кодирования

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *