business intelligence что это такое
Business Intelligence: что такое BI-система и зачем она нужна бизнесу
Натали Азаренко
Создайте рассылку в конструкторе за 15 минут. Отправляйте до 1500 писем в месяц бесплатно.
Отправить рассылку
Business Intelligence, или BI-системы — это набор инструментов и технологий для сбора, анализа и обработки данных. Например, в компании для приёма заявок используют несколько каналов и нужно собрать единую статистику продаж. Или рекламные кампании охватывают несколько площадок и необходимо сравнить их эффективность. Все эти процессы можно настроить через BI-систему.
Необработанную информацию из разных источников посредством BI преобразуют в удобную и понятную аналитику. BI-системы (Microsoft Power BI, Tableau, Qlik) можно применять в любой отрасли или сфере деятельности — как на уровне компании в целом, так и для подразделений или отдельных продуктов.
Как работают BI-системы
Для обычного пользователя принцип действия BI-системы выглядит просто: к системе подключают источники данных, далее информация направляются в единое хранилище и обрабатываются, а затем демонстрируются в виде готовых отчётов. Источниками данных выступают различные системы — облачные (Oracle Cloud, Google BigQuery, Microsoft Azure и другие веб-подключения), файловые (Excel, XML, PDF и иные табличные файлы), реляционные (SQL Server, MySQL, Oracle).
Пример отчета о глобальных продажах магазина в Power BI
Чтобы использовать BI-систему пользователю не нужно обладать специальными IT-познаниями. С помощью понятного интерфейса можно запросить нужный отчёт и получить доступ к аналитике. Система сформирует удобный дашборд — информационную панель, на которой визуально представленные данные сгруппированы по смыслу. Все данные на дашборде — интерактивные. Графики можно увеличивать и перестраивать. Можно просматривать источники информации и детально изучать показатели аналитики. Для отображения доступны разные форматы — отчёты, таблицы, графики, диаграммы.
За простым использованием системы скрываются сложные процессы обработки данных и формирования расширенной аналитики. В состав BI-решения входят:
BI-системы поддерживают множество бизнес-решений — от операционных до стратегических. С помощью технологий анализируют огромные объёмы информации. Но внимание пользователя акцентируется только на ключевых факторах аналитики, которые позволяют смоделировать варианты последующих действий и бизнес-решений.
Принцип работы BI-системы на примере Power BI
Важно, что любая компания может адаптировать BI-систему под свои потребности. Например, выбрать источники данных, задать принцип обработки информации, определить формат отчётности.
BI-системы особенно полезны, если объединяют сведения с рынка и информацию из финансовых и производственных источников компании. Совокупность внешних и внутренних данных даёт полное представление ситуации в бизнесе. Такую картину невозможно получить при анализе одного источника и ограниченной аналитике.
Зачем внедрять BI-системы в бизнесе
Компании оперируют огромными объемами данных. Например, считают расходы и выручку, определяют чистую прибыль, анализируют трафик и количество заявок, отслеживают выпуск продукции. Все данные для аналитики хранятся в разных форматах и различных системах.
Чтобы обработать информацию, аналитики сначала собирают все данные в одну таблицу, затем сортируют и оставляют только нужные показатели, а потом сравнивают показатели с прошлыми отчётами. Такая работа отнимает десятки часов еженедельно. При этом в процессе формирования отчёта показатели могут утратить актуальность. К тому же аналитики могут ошибиться или собрать неполные данные. Итоговый отчёт может оказаться бесполезным.
Вручную собрать и обработать все данные компании невозможно. Часть информации так и остаётся необработанной. Компания может случайно пропустить заявки клиентов, своевременно не узнать о сбоях производства, потерять деньги из-за игнорирования проблем.
Основные задачи, решаемые посредством систем BI:
Общая цель Business Intelligence — предоставление бизнесу возможности принятия обоснованных решений с учётом полной аналитики. У компании, внедрившей BI, будут полные, точные и организованные данные.
Панель анализа клиентов в Microsoft Power BI
Благодаря BI-системам компаниям не нужно нанимать специалистов по data science (наука о данных) — система соберет все «сырые» данные, самостоятельно обработает их и автоматически покажет информацию, с которой можно работать.
Как понять, что компании нужно использовать Business Intelligence
Любая компания в любой отрасли может применять Business Intelligence. Особенно задуматься о внедрении BI-систем стоит, если:
BI-системы могут стать ценным инструментом для принятия решений и разработки стратегии. Полученные данные можно использовать в самых разных сферах — маркетинге, продажах, поставках, финансах. Например, можно:
Business Intelligence выводит работу компании на новый уровень. Постоянный мониторинг данных позволяет принимать более продуманные и своевременные решения. Доступность исторических и текущих данных помогает строить верные прогнозы для бизнеса. Оперативный доступ сотрудников к аналитике и операционным данным повышает качество работы и одновременно снижает трудовые и временные затраты.
Как выбирать программное обеспечение для внедрения BI
Существует достаточно много надёжных поставщиков BI-инструментов. Например, популярны платформы Microsoft, Tableau, Qlik. Также востребованы системы Zoomdata, Sisense, Information Builders.
Можно выделить несколько факторов, на которые стоит обратить внимание при выборе эффективной BI-системы:
Нельзя сказать, какое BI-решение является самым лучшим. Компании выбирают платформу BI с учётом различных критериев и собственных возможностей.
Примеры BI-систем
Tableau
Система выполняет углубленный анализ информации и представляет результаты на информационной интерактивной панели в режиме реального времени. Источниками данных для аналитики могут быть любые источники с программным интерфейсом.
Над отчётом могут работать одновременно несколько пользователей. При этом пользователи могут самостоятельно создавать необходимые инструменты или использовать готовые решения. Результатом можно делиться через системный сервер, по ссылке или email.
Tableau работает в вебе, на десктопе и мобильных устройствах.
Пример визуализации данных в Tableau
Power BI
Сервис от Microsoft предназначен для анализа и визуальной демонстрации больших объёмов информации. Можно подключать разные источники данных, в том числе собственные приложения.
Система совместима с продуктами MIcrosoft (MS Excel, SQL Server, Azure Cloud Service). Интерфейс программы разработан по подобию Windows.
Сервис функционирует на любых платформах: в облаке, на десктопе и смартфонах. Интерактивные дашборды показывают данные в реальном времени и доступны на любом устройстве. Пользователи могут делиться отчётами несколькими способами.
Выбор диаграммы для представления результатов в Power BI
BI-система предусматривает импорт информации из различных источников. Данные проходят обработку в оперативной памяти. Созданные визуализации можно корректировать, дополнять любыми фильтрами. В Qlik доступна совместная работа над отчётами.
Платформа доступна для корпоративного и персонального использования. При этом продукт работает на десктопе, в облачной версии и на любых устройствах с наличием браузера. Для всех версий предусмотрен одинаковый алгоритм аналитики.
Отчёт по анализу бюджета в Qlik
Business Intelligence превращает множественные разрозненные данные в полезную информацию для руководства и управления бизнесом, проверки гипотез и принятия решений. Компании, которые используют стратегии BI, располагают точными, полными и организованными данными. Это помогает оценить текущее состояние бизнеса, выявить проблемы и возможности, спланировать будущее развитие.
Что такое Business Intelligence
Существует огромное количество терминов: аналитика, data mining, анализ данных, business intelligence и разница между ними не всегда столь очевидна даже для людей, которые с этим связаны. Сегодня мы расскажем о том, что же такое Business Intelligence (BI) доступным и понятным языком. Тема безусловна огромна и её не покрыть лишь одной короткой статьей, но наша задача — помочь сделать первый шаг и заинтересовать читателя темой. Заинтересованный же читатель также найдет исчерпывающий список для дальнейших шагов.
Зачем всё это нужно: из жизни аналитика
Представим, нами (неким аналитиком Петровичем у поставщика Цветочек) стоит задача оценить продажи ряда магазинов (куда мы поставляем товар) и каждый магазин ведет свой учет проданных товаров. Реальность такова, что формы учета будут заполнены не пойми как и не пойми кем, то есть у них будет разная структура и разный формат хранения (некоторая форма таблиц). Схематично эта задача изображена на схеме выше.
Казалось бы задача несложная и поэтому рассмотрим лобовое решение: пусть у нас есть N таблиц и нам нужно их собрать вместе в одну таблицу, тогда напишем N скриптов, которые преобразуют эти таблицы и один сборщик, который собирает их вместе.
Если мы поднимемся на уровень целой организации, то увидим, что проблем даже больше.
В чем задача: проблема на уровне компании
Производитель Цветочек на самом деле работает не напрямую с магазинами, а через некоторых посредников. Посредники посещают магазины и непосредственно своими действиями пытаются стимулировать продажи. Соответственно, они являются материально заинтересованными лицами и информацию, которую они выдают, приходится перепроверять.
Принципиально, задача выглядит схожим образом: пусть у нас есть N магазинов и K дистрибьюторов, можем ли агрегировать данные магазинов и сравнить их с результатами дистрибьюторов? (У всех данные имеют разную структуру и формат.)
Здесь помимо таблиц, мы уже можем столкнуться с целым зоопарком форматов, к которым добавляются отчеты дистрибьюторов. Как правило задача характеризуется очень низким качеством данных, в том числе дублированием, несогласованностью и ошибками. На основе полученных результатов и сравнения данных, отдел по закупкам принимает решения о том сколько, кому и почем чего отгружать. То есть решение этой задачи непосредственно влияет на финансовые показатели компании, что безусловно важно.
Рассмотрим несколько вариантов решения на уровне компании:
В целом если мы говорим о небольшом или среднем производителе, то с точки зрения времени интеграции, цены и качества решения сервис выглядит оптимальным вариантом, так как ценообразование динамическое и интеграция минимальна через веб. Как правило плюсом корпоративного ПО является настраиваемость и касмтомизированность (каждый бизнес считает себя уникальным), но описанная задача достаточно типична и стандартна для достаточно широкого круга компаний. Безусловно, нет единого решения для всех, но для каждого в отдельности его можно найти.
Сам процесс на уровне компании выглядит схожим образом: консолидируется данные, определенным образом трансформируются (агрегируются) и загружаются в систему для анализа.
(кликабельно)
Обобщаем задачу: всё это звенья одной цепи
В чём же разница между аналитикой, data mining и business intelligence (BI)? Первые включают в себя комплекс методов для анализа уже чистых данных, а на практике очистка и преобразование данных в удобный для анализа формат — важный и неотъемлемый процесс. Так же помимо работы с преобразованием и консолидацией данных, основная задача BI — это принятие решений для бизнеса.
Большая инфографика
В схематичной и немного упрощенной форме описывается задача консолидации данных. Если нет возможности заниматься изучением темы в деталях, то эта инфографика даёт хорошее первое приближение проблемы и возможных методов решения. (кликабельно; взято отсюда)
С чем можно поэкспериментировать
Сервис бесплатен и доступен через веб — ссылка.
BI-системы: что это и зачем они нужны бизнесу
Статья подготовлена экспертами факультета BI-разработки GeekBrains.
На международных рынках компании-гиганты работают с миллионами, десятками, а кто-то — и с сотнями миллионов клиентов. С помощью интернета обо всех этих клиентах можно собирать самые разные данные: возраст, пол, образование, вкусы, предпочтения и т. д. Анализ этих данных помогает менеджерам ориентироваться в пространстве и времени, планировать спрос, оценивать перспективы развития и прорабатывать стратегии.
Компаниям нужно много данных, и за их хранение, как правило, отвечают администраторы баз данных. На основании анализа данных строятся и проверяются гипотезы для развития бизнеса. Этим занимаются аналитики.
В последнее время эти две группы всё чаще дополняются отделами Business Intelligence — бизнес-аналитики. Эти специалисты приводят сырые, неудобные данные в состояние, пригодное для бизнес-анализа. Сырые данные необходимо очищать от различных выбросов, дублей и других помех. А учитывая их объём, частое обращение к этим данным будет отнимать слишком много ресурсов.
Для изучения бизнес-метрик не нужны вообще все данные. Например, чтобы получить ежедневную динамику новых пользователей приложения, не нужны их id, пол и местоположение. Достаточно сделать таблицу, в которую для каждого дня проставляется количество новых пользователей — оно будет суммироваться. Таблица будет обновляться в нерабочее время, а днём сотрудники смогут работать с нужной статистикой.
Специалисты по BI готовят таблицы агрегированных данных (витрины), строят отчёты на основе полученных витрин (дашборды) и настраивают автоматическое обновление данных в этой системе. От стандартных отчётов дашборд отличается гибкостью и интерактивностью — в нём предусмотрены разные наборы фильтров, параметров и визуализаций. Дашборд можно назвать интерактивной аналитической панелью, где заказчик может просматривать данные в любом интересующем его разрезе.
BI-разработчики не скажут, как повлияет на ваши продажи новый продукт конкурента, но построят систему, где вы сможете проверить это сами.
Основные задачи BI
Сбор данных. BI-системы позволяют строить сложные виды отчётности, где можно объединить в одну таблицу данные из разнообразных источников — базы данных, файлы, онлайн-источники (Google Docs) и т. д.
Очистка и агрегация. Агрегация данных помогает не только избавиться от лишней информации, но и сэкономить память. При работе с большими объёмами данных имеет смысл разделять нагрузку при запросах: на первом этапе агрегируем данные и складываем в таблицу, на втором делаем запрос к этой таблице из дашборда.
Визуализация. BI-инструменты предоставляют множество вариантов визуализации данных: от обычных таблиц до различных Scatter Plots, которые можно применять для практически любого анализа. Нередко BI-инструменты дают возможность связывать различные визуализации друг с другом. Например, есть два графика с одинаковой цветовой легендой. Можно настроить так, чтобы при выделении одного из элементов легенды на первом графике этот же элемент подсвечивался/фильтровался на втором. Такие приёмы существенно ускоряют поиск нужной информации и упрощают анализ.
Быстрый доступ. Быстрый доступ к данным — огромная помощь в оперативном принятии решений. BI-разработчик может использовать единое пространство для дашбордов или другой инструмент — в любом случае доступ к информации значительно упрощается. Можно не ставить задачу аналитику, не писать собственноручно запрос к базе данных — достаточно открыть дашборд и отфильтровать там необходимую информацию. Особенно хорошо, если доступ к данным предоставляется в режиме реального времени.
Распределение доступа. BI-системы обычно располагают различными средствами распределения доступа, что помогает гибко настраивать процесс получения данных. Например, один и том же дашборд можно настроить так, чтобы разным пользователям были видны разные блоки данных.
Хорошо настроенная BI-система снимает с аналитиков и продуктовых команд часть нагрузки и освобождает время, которое они тратят на оперативную отчётность или постоянно повторяющиеся запросы к базе данных. Если формат отчётности зафиксирован, можно построить дашборд в соответствии с ним, и все необходимые данные будут отображаться автоматически. Один дашборд заменит множество еженедельных отчётов. Он будет хранить весь объём данных и заказчик сможет сам отфильтровать нужную ему информацию вместо того, чтобы ждать, пока эти данные ему пришлют.
Из чего состоят BI-системы?
BI-системы можно разделить на три основные составляющие:
Хранилище данных — база с сырыми и агрегированными данными, которые будут источником для аналитики (как для запросов к базе, так и для дашбордов).
ETL-система (Extract, Transform, Load) отвечает за подготовку и сбор агрегированных данных в витрины. Обычно это набор скриптов на языке программирования, каждый из которых берёт сырые данные из одних таблиц хранилища, обрабатывает их и отправляет в другие. Также ETL-система может использоваться для административных задач, например для резервного копирования или регулярного обновления дашбордов. ETL-системы может не быть, если в дашборд надо загружать небольшой объём данных и если не требуется использовать сложные запросы к БД.
BI-сервер/BI-инструмент. Почему через слеш? Потому что есть два основных подхода — поднимать BI-сервер или использовать только BI-инструмент.
BI-сервер — это место для хранения дашбордов, средство визуализации, а также система распределения доступов и автоматического обновления. Сотрудники строят дашборды у себя на компьютере, загружают результат работы на сервер, настраивают расписание обновления и права на просмотр.
BI-инструмент — это программная платформа для построения дашбордов и визуализаций. В этом случае компании экономят: не используют сервер, а строят дашборды на локальных компьютерах, загружают их в общее пространство (например, Git), а обновление дашбордов и отправку информации целевым пользователям настраивают в ручном режиме или с помощью языков программирования.
Хранение отчётов и данных в единой BI-системе обеспечивает прозрачную инфраструктуру и облегчает поиск информации.
О чём нужно подумать при внедрении BI
Проанализируйте источники данных, их объём и тип. Это позволит оценить необходимость разработки ETL-системы и правильно выбрать BI-инструмент.
Выберите BI-инструмент, подходящий вашим целям. Инструменты различаются возможностями визуализации, разнообразием источников данных, ценами и т. д. Самые известные инструменты рассмотрены в статье на Хабре. Также проанализируйте аудиторию будущих пользователей BI-системы, подумайте над распределением прав доступа и шаблонами дашбордов.
Определите необходимость разработки ETL-системы. Она зависит от того, насколько сложны запросы к данным и насколько большой их объём требуется анализировать. Если объём велик, для бесперебойной работы потребуется распределять нагрузку между BI-сервером и ETL-системой. Часто предобработку и агрегацию данных делают в ETL-системе, а в BI строят дашборды, опираясь на уже собранные таблицы. Это ускоряет работу и даёт возможность использовать агрегированные таблицы для нескольких отчётов одновременно.
Подумайте о правильной документации для своих дашбордов, о том, как обучить сотрудников ими пользоваться — например, запишите видеоинструкции.
Если вы хотите освоить BI-системы во всех подробностях, приглашаем на курс GeekBrains. Там подробно разбирается профессия BI-разработчика — от написания запросов к данным до построения всей инфраструктуры.
Заключение
Часто компании не решаются внедрять BI-системы из-за сложности развёртывания инфраструктуры с нуля. Это стандартная проблема смены парадигмы. Вроде и так всё работает, отчётность получаем вовремя — и хорошо. Однако развёртывание BI-систем — это серьёзная инвестиция в будущее компании, помогающая внедрить data-driven-подход — управление, основанное на данных. Его главный принцип: решения нужно принимать, опираясь на исторические и прогнозируемые данные, а не на интуицию и личный опыт. BI-системы внедряются небыстро, но если у всех сотрудников будет доступ к необходимым данным за любой период времени, это упростит принятие стратегически верных решений и многократно окупится. Не измеряешь — не управляешь.
Статья подготовлена экспертами факультета BI-разработки GeekBrains.
На международных рынках компании-гиганты работают с миллионами, десятками, а кто-то — и с сотнями миллионов клиентов. С помощью интернета обо всех этих клиентах можно собирать самые разные данные: возраст, пол, образование, вкусы, предпочтения и т. д. Анализ этих данных помогает менеджерам ориентироваться в пространстве и времени, планировать спрос, оценивать перспективы развития и прорабатывать стратегии.
Компаниям нужно много данных, и за их хранение, как правило, отвечают администраторы баз данных. На основании анализа данных строятся и проверяются гипотезы для развития бизнеса. Этим занимаются аналитики.
В последнее время эти две группы всё чаще дополняются отделами Business Intelligence — бизнес-аналитики. Эти специалисты приводят сырые, неудобные данные в состояние, пригодное для бизнес-анализа. Сырые данные необходимо очищать от различных выбросов, дублей и других помех. А учитывая их объём, частое обращение к этим данным будет отнимать слишком много ресурсов.
Для изучения бизнес-метрик не нужны вообще все данные. Например, чтобы получить ежедневную динамику новых пользователей приложения, не нужны их id, пол и местоположение. Достаточно сделать таблицу, в которую для каждого дня проставляется количество новых пользователей — оно будет суммироваться. Таблица будет обновляться в нерабочее время, а днём сотрудники смогут работать с нужной статистикой.
Специалисты по BI готовят таблицы агрегированных данных (витрины), строят отчёты на основе полученных витрин (дашборды) и настраивают автоматическое обновление данных в этой системе. От стандартных отчётов дашборд отличается гибкостью и интерактивностью — в нём предусмотрены разные наборы фильтров, параметров и визуализаций. Дашборд можно назвать интерактивной аналитической панелью, где заказчик может просматривать данные в любом интересующем его разрезе.
BI-разработчики не скажут, как повлияет на ваши продажи новый продукт конкурента, но построят систему, где вы сможете проверить это сами.
Основные задачи BI
Сбор данных. BI-системы позволяют строить сложные виды отчётности, где можно объединить в одну таблицу данные из разнообразных источников — базы данных, файлы, онлайн-источники (Google Docs) и т. д.
Очистка и агрегация. Агрегация данных помогает не только избавиться от лишней информации, но и сэкономить память. При работе с большими объёмами данных имеет смысл разделять нагрузку при запросах: на первом этапе агрегируем данные и складываем в таблицу, на втором делаем запрос к этой таблице из дашборда.
Визуализация. BI-инструменты предоставляют множество вариантов визуализации данных: от обычных таблиц до различных Scatter Plots, которые можно применять для практически любого анализа. Нередко BI-инструменты дают возможность связывать различные визуализации друг с другом. Например, есть два графика с одинаковой цветовой легендой. Можно настроить так, чтобы при выделении одного из элементов легенды на первом графике этот же элемент подсвечивался/фильтровался на втором. Такие приёмы существенно ускоряют поиск нужной информации и упрощают анализ.
Быстрый доступ. Быстрый доступ к данным — огромная помощь в оперативном принятии решений. BI-разработчик может использовать единое пространство для дашбордов или другой инструмент — в любом случае доступ к информации значительно упрощается. Можно не ставить задачу аналитику, не писать собственноручно запрос к базе данных — достаточно открыть дашборд и отфильтровать там необходимую информацию. Особенно хорошо, если доступ к данным предоставляется в режиме реального времени.
Распределение доступа. BI-системы обычно располагают различными средствами распределения доступа, что помогает гибко настраивать процесс получения данных. Например, один и том же дашборд можно настроить так, чтобы разным пользователям были видны разные блоки данных.
Хорошо настроенная BI-система снимает с аналитиков и продуктовых команд часть нагрузки и освобождает время, которое они тратят на оперативную отчётность или постоянно повторяющиеся запросы к базе данных. Если формат отчётности зафиксирован, можно построить дашборд в соответствии с ним, и все необходимые данные будут отображаться автоматически. Один дашборд заменит множество еженедельных отчётов. Он будет хранить весь объём данных и заказчик сможет сам отфильтровать нужную ему информацию вместо того, чтобы ждать, пока эти данные ему пришлют.
Из чего состоят BI-системы?
BI-системы можно разделить на три основные составляющие:
Хранилище данных — база с сырыми и агрегированными данными, которые будут источником для аналитики (как для запросов к базе, так и для дашбордов).
ETL-система (Extract, Transform, Load) отвечает за подготовку и сбор агрегированных данных в витрины. Обычно это набор скриптов на языке программирования, каждый из которых берёт сырые данные из одних таблиц хранилища, обрабатывает их и отправляет в другие. Также ETL-система может использоваться для административных задач, например для резервного копирования или регулярного обновления дашбордов. ETL-системы может не быть, если в дашборд надо загружать небольшой объём данных и если не требуется использовать сложные запросы к БД.
BI-сервер/BI-инструмент. Почему через слеш? Потому что есть два основных подхода — поднимать BI-сервер или использовать только BI-инструмент.
BI-сервер — это место для хранения дашбордов, средство визуализации, а также система распределения доступов и автоматического обновления. Сотрудники строят дашборды у себя на компьютере, загружают результат работы на сервер, настраивают расписание обновления и права на просмотр.
BI-инструмент — это программная платформа для построения дашбордов и визуализаций. В этом случае компании экономят: не используют сервер, а строят дашборды на локальных компьютерах, загружают их в общее пространство (например, Git), а обновление дашбордов и отправку информации целевым пользователям настраивают в ручном режиме или с помощью языков программирования.
Хранение отчётов и данных в единой BI-системе обеспечивает прозрачную инфраструктуру и облегчает поиск информации.
О чём нужно подумать при внедрении BI
Проанализируйте источники данных, их объём и тип. Это позволит оценить необходимость разработки ETL-системы и правильно выбрать BI-инструмент.
Выберите BI-инструмент, подходящий вашим целям. Инструменты различаются возможностями визуализации, разнообразием источников данных, ценами и т. д. Самые известные инструменты рассмотрены в статье на Хабре. Также проанализируйте аудиторию будущих пользователей BI-системы, подумайте над распределением прав доступа и шаблонами дашбордов.
Определите необходимость разработки ETL-системы. Она зависит от того, насколько сложны запросы к данным и насколько большой их объём требуется анализировать. Если объём велик, для бесперебойной работы потребуется распределять нагрузку между BI-сервером и ETL-системой. Часто предобработку и агрегацию данных делают в ETL-системе, а в BI строят дашборды, опираясь на уже собранные таблицы. Это ускоряет работу и даёт возможность использовать агрегированные таблицы для нескольких отчётов одновременно.
Подумайте о правильной документации для своих дашбордов, о том, как обучить сотрудников ими пользоваться — например, запишите видеоинструкции.
Если вы хотите освоить BI-системы во всех подробностях, приглашаем на курс GeekBrains. Там подробно разбирается профессия BI-разработчика — от написания запросов к данным до построения всей инфраструктуры.
Заключение
Часто компании не решаются внедрять BI-системы из-за сложности развёртывания инфраструктуры с нуля. Это стандартная проблема смены парадигмы. Вроде и так всё работает, отчётность получаем вовремя — и хорошо. Однако развёртывание BI-систем — это серьёзная инвестиция в будущее компании, помогающая внедрить data-driven-подход — управление, основанное на данных. Его главный принцип: решения нужно принимать, опираясь на исторические и прогнозируемые данные, а не на интуицию и личный опыт. BI-системы внедряются небыстро, но если у всех сотрудников будет доступ к необходимым данным за любой период времени, это упростит принятие стратегически верных решений и многократно окупится. Не измеряешь — не управляешь.