halt on в биосе что это такое

Halt On

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Для определения реакции компьютера на ошибки в BIOS часто используется опция Halt On (Остановить при… ). Данная опция позволяет пользователю выбрать способ поведения компьютера при обнаружении ошибки во время процедуры проверки аппаратного обеспечения компьютера. Опция может иметь несколько вариантов значений.

Принцип работы

После включения компьютера BIOS проводит тщательный (или не слишком тщательный, в зависимости от установок другой опции BIOS, Quick Boot) тест аппаратного обеспечения компьютера. В том случае, если весь процесс проходит без ошибок, то BIOS передает управление загрузчику операционной системы, и начинается процесс запуска ОС. В том же случае, если возникла какая-то ошибка, то BIOS обычно останавливает процесс загрузки и выводит на экран соответствующее сообщение.

Однако далеко не всякая ошибка в аппаратном обеспечении может приводить к невозможности загрузки операционной системы, поскольку в ряде случаев компьютер может успешно функционировать и без каких-либо компонентов, например без устройств ввода-вывода, таких, как клавиатура.

Именно поэтому в некоторых BIOS существует опция, которая предоставляет пользователю выбор тех типов неисправностей, которые будут приводить к остановке загрузки компьютера, и тех типов неисправностей, после которых дальнейшая загрузка может быть продолжена.

Данная опция, как правило, носит название Halt on. Ее обычными вариантами являются:

Кратко разберем особенности каждого варианта. Вариант All Errors (Все ошибки) означает, что компьютер останавливает загрузку при обнаружении любой ошибки, вне зависимости от того, с каким компонентом она связана. При варианте All, But Keyboard (Все, кроме клавиатуры) будут игнорироваться ошибки, связанные с клавиатурой. All, But Diskette (Все, кроме флоппи-дисковода) означает, что будут игнорироваться ошибки, связанные с накопителем для гибких дисков. All, But Disk/Key объединяет два предыдущих варианта. No Errors означает, что компьютер продолжит загрузку при любых ошибках.

Какой вариант опции выбрать?

В большинстве случаев следует выбрать вариант All Errors. Однако из данного правила могут быть исключения. Многие компьютеры, например, серверы, могут обходиться как без клавиатуры, так и без флоппи-дисковода. В таком случае лучше выбрать варианты, не прерывающие загрузки после обнаружения ошибок клавиатуры и/или дисковода, чтобы ПК не останавливался бы сразу после процедуры POST из-за несущественной причины.

Источник

За что отвечает Halt on в BIOS?

На самой первой вкладке Award BIOS – Standard CMOS Features можно найти настройку с именем Halt on. По умолчанию обычно она установлена в All Errors или в All, But Keyboard.

За что отвечает данная опция и какие значения может принимать мы расскажем вам в данной статье.

Что такое Halt on в BIOS?

Во время включения компьютера еще до загрузки операционной системы, BIOS проводит быстрый тест всех важных компонентов ПК. Если обнаруживается какая – либо ошибка или предупреждение, то на экран выводится сообщение.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Пример работы Halt on: Нужно нажать F1 для пропуска ошибки флоппи – дисковода

Так вот опция Halt on отвечает за дальнейшее поведение компьютера, при обнаружении некритических ошибок на этапе начальной загрузки системы. Возможно два варианта для всех или определенных типов ошибок – дальнейшая загрузка или запрос нажатия кнопки на клавиатуре для продолжения загрузки (Обычно кнопка F1).

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Варианты значений Halt on

Варианты значений опции Halt on:

Какое значение лучше ставить для опции Halt on?

Правильнее всего ставить значение All Errors, чтобы не пропустить появление той или иной ошибки. Нажатие F1 для того и запрашивается, чтобы обратить внимание пользователя на наличие проблемы.

Но если вы знаете, что проблемы нет, а сообщение выводится ошибочно, то чтобы каждый раз не нажимать кнопку F1 для продолжения загрузки ПК, опцию Halt on лучше установить в значение No Errors.

Источник

ЧИТАТЬ КНИГУ ОНЛАЙН: BIOS и тонкая настройка ПК. Легкий старт

НАСТРОЙКИ.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

СОДЕРЖАНИЕ.

СОДЕРЖАНИЕ

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

BIOS и тонкая настройка ПК

Персональные компьютеры прочно вошли в нашу жизнь и успешно используются миллионами людей для работы и отдыха. Безусловно, каждый хочет, чтобы его компьютер работал быстро и надежно. Для этого периодически нужно обращаться за помощью к техническим специалистам, но все можно сделать и самому.

Действенная настройка компьютера немыслима без программы BIOS, которая отвечает за запуск компьютера и установку параметров оборудования. Программа BIOS многим пользователем кажется сложной и непонятной, но с помощью этой книги вы быстро научитесь с ней работать и сможете применять BIOS для эффективной настройки компьютера.

Книга предназначена для широкого круга читателей, желающих легко и быстро разобраться с принципами программы BIOS и научиться настраивать компьютер с ее помощью. Для работы с книгой не требуется специальных знаний, достаточно обладать навыками пользователя в среде операционной системы Windows и иметь общее представление об устройстве и работе компьютера.

С помощью книги вы сможете самостоятельно настраивать основные компоненты компьютера: процессор, системную плату, память, видеоадаптер и т. д. Это позволит вам существенно увеличить производительность системы при сохранении ее стабильности. А любители экспериментов найдут рекомендации, как эффективно, а главное безопасно разогнать компьютер.

Ваши замечания, предложения, вопросы отправляйте по адресу электронной почты gurski@minsk.piter.com (издательство «Питер», компьютерная редакция).

На сайте издательства http://www.piter.com вы найдете подробную информацию о наших книгах.

1. Общее устройство компьютера

Прежде чем приступить к изучению параметров BIOS, следует ближе познакомиться с устройствами, находящимися в системном блоке, и с их взаимодействием между собой.

Что находится внутри системного блока

Внутри системного блока находятся устройства для обработки и хранения информации (рис. 1.1). В зависимости от конфигурации компьютера они могут быть различными, но в большинстве случаев в компьютере присутствуют следующие устройства.

■ Блок питания. Вырабатывает стабилизированные напряжения для питания всех устройств, находящихся в системном блоке.

■ Системная, или материнская, плата. Базовое устройство компьютера для установки процессора, оперативной памяти и плат расширения. К ней подключаются устройства ввода/вывода, дисковые накопители и др. Системная плата обеспечивает их взаимодействие, используя специальный набор микросхем системной логики, или чипсет.

■ Процессор. «Сердце» компьютера, служит для обработки информации по заданной программе.

■ Оперативная память. Используется для работы операционной системы, программ и для временного хранения текущих данных. Она выполнена в виде модулей, установленных на системную плату, и может хранить информацию только при включенном питании.

■ Видеоадаптер. Обычно выполняется в виде платы расширения и служит для формирования изображения, которое потом выводится на монитор.

■ Жесткий диск. Основное устройство для хранения информации в компьютере.

■ Дисковод. Хотя дискеты уже морально устарели, по традиции дисководы устанавливаются даже в новые компьютеры.

■ Привод для CD или DVD. Компакт-диски широко используются для распространения информации, поэтому приводы есть почти в каждом компьютере.

■ Платы расширения. При необходимости в системный блок можно установить дополнительные устройства, выполненные в виде плат или карт расширения. Примерами таких устройств могут быть модемы, сетевые платы, ТВ-тюнеры и многие другие.

Рис. 1.1. Системный блок типичного персонального компьютера

Процессор и его параметры

Современный процессор – это микросхема с несколькими сотнями выводов, которая устанавливается в специальный разъем на системной плате; сверху на нем закрепляется радиатор с вентилятором для охлаждения (его также называют кулером).

Скорость работы процессора характеризуется его тактовой частотой, которая может достигать 3-4 ГГц. Тактовые частоты из года в год увеличивались, но в последнее время этот процесс замедлился. По скольку рабочие частоты приближаются к своему физическому пределу, производители больше внимания уделяют повышению эффективности работы процессоров и их дополнительным функциям.

Рассмотрим основные параметры процессора.

■ Название и номер модели (рейтинг). Эта характеристика обычно указывается в прайс- листах компьютерных магазинов или при описании конфигурации компьютера. В зависимости от модели процессора в названии может указываться его реальная тактовая частота или же условный рейтинг производительности.

■ Тип разъема, или форм-фактор. Каждая модель процессора устанавливается в разъем соответствующего типа и с соответствующим количеством контактов. Для современных процессоров компании Intel используются разъемы Socket 370, Socket 478 и Socket Т (LGA 775), для процессоров AMD – Socket А (462), Socket 754, Socket 939 и Socket 940.

■ Частота FSB. Для обмена данными с другими устройствами процессор использует шину FSB (Front Side Bus). В современных системах за один такт она передает сразу несколько пакетов данных, и в параметрах процессора эта частота указывается уже с учетом такого умножения скорости.

ПРИМЕЧАНИЕ

В процессорах семейства AMD Athlon 64 данные обмениваются по шине НТ (HyperTransport), которая работает на частотах, в несколько раз превышающих частоту FSB.

■ Множитель, или коэффициент умножения. Ядро центрального процессора работает на тактовой частоте, являющейся произведением частоты FSB на коэффициент умножения. Например, для процессора AMD Athlon 64 3700+ частота FSB – 200 МГц, множитель – 12, в результате тактовая частота будет равна 2400 МГц.

■ Тактовая частота. Параметр, показывающий реальную частоту работы ядра процессора. Большинство пользователей считают тактовую частоту единственным показателем скорости работы процессоров, но это не совсем так. Как уже отмечалось выше, при маркировке современных процессоров может указываться числовой рейтинг производительности, а не реальная тактовая частота.

■ Объем кэш-памяти. Процессор работает значительно быстрее, чем оперативная память, и при обращении к ней ему приходится некоторое время простаивать в ожидании результата. Чтобы снизить простои, непосредственно на кристалле процессора устанавливается небольшой объем очень быстрой памяти, называемой кэш-памятью.

Современные процессоры имеют двухуровневую организацию интегрированной кэш-памяти. У кэш-памяти первого уровня (L1) наивысшая скорость и небольшой объем (обычно 16-32 Кбайт). Кэш-память второго уровня (L2) обладает несколько меньшим быстродействием, но объем может составлять от 128 Кбайт до 1 Мбайт. В некоторых новых процессорах также встречается кэш-память третьего уровня (L3) объемом от 1 Мбайт.

Для современных процессоров характерны дополнительные функции и технологии, расширяющие их возможности:

■ для работы с мультимедиа и большими объемами данных используются технологии 3DNow!, ММХ, SSE, SSE2, SSE3;

■ для защиты от некоторых вирусов в процессорах AMD применяется технология NX-bit (No Execute), в процессорах Intel – XD (Execute Disable Bit).

■ для снижения энергопотребления существуют технологии Cool’n’Quiet (в AMD), ТМ1/ТМ2, С1Е, EIST (в Intel);

■ для выполнения 64-битных инструкций используются AMD64 или ЕМТ64 (Intel);

■ для выполнения нескольких потоков команд одновременно некоторые процессоры Intel поддерживают технологию НТ (Hyper-Threading Technology).

Системная плата и чипсет

Наиболее важные компоненты компьютера располагаются на системной плате, типичный пример которой показан на рис. 1.2. Основа любой системной платы – чипсет, то есть набор микросхем, обеспечивающих взаимодействие между процессором, памятью, накопителями и другими устройствами. В его состав входят два основных чипа, которые обычно называются северным (Northbridge) и южным (Southbridge) мостами. Иногда северный мост называют системным контроллером, южный – функциональным контроллером.

Рис. 1.2. Системная плата

Основная задача северного моста – обеспечить связь процессора с оперативной памятью и видеосистемой. Данные между процессором и северным мостом обмениваются с

Источник

Enhanced halt state что это в биосе

В этой статье мы рассмотрим еще один часто встречающийся параметр BIOS — C1E. В зависимости от версии bios и модели материнской платы может иметь различные названия. Среди них:

Все это различные вариации названий одной и той же опции BIOS.

Может иметь 2 значения:

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Опция c1e support в BIOS

Что делает c1e support?

Данная опция предназначена для активации специального режима энергосбережения процессора (Enhanced Halt State), который находится в состоянии простоя.

Иными словами, когда процессор бездействует или используется далеко не на полную мощность, он автоматически отключит часть своих возможностей, тем самым занизив энергопотребление и как следствие — тепловыделение.

Но, как только появится необходимость в его полной работоспособности он автоматически моментально выйдет из энергосберегающего режима и включится на полную мощность.

Стоит ли отключать c1e support?

По умолчанию рекомендуемое значение для опции c1e support — «AUTO«. Одним из случаев, когда ее лучше отключить является разгон процессора. Но если вы не собираетесь этим заниматься, то лучше оставить c1e support в состоянии «AUTO«. Это, пусть и не сильно, но все же будет экономить электроэнергию, потребляемую компьютером, а также способствовать его меньшему нагреву.

Другие идентичные по назначению параметры: C1E support, C1E enhanced halt state, CPU enhanced halt C1E.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Опция C1E предназначена для настройки параметров энергосбережения процессоров компании Intel. Опция имеет два варианта значений – Auto и Disabled. В различных BIOS она также может называться Intel C-STATE Technology, Enhanced C1 или Enhanced Halt.

Принцип работы

Включение опции C1Е позволяет задействовать для центрального процессора (ЦП), находящегося в неактивном состоянии, особый энергосберегающий режим, который носит название Enhanced Halt State («Улучшенное состояние простоя»). В этом состоянии снижается частота работы ЦП, его напряжение, а также отключаются некоторые неиспользуемые функциональные элементы процессора. В результате снижается потребление электроэнергии, а также выделение тепла процессором. Данная технология стала доступна пользователю с выходом процессоров семейства Pentium 4, основанных на ядре Prescott. Как правило, функцию, реализующую технологию Enhanced Halt State, можно найти на материнских платах, предназначенных для ЦП производства Intel, однако некоторые материнские платы платформы AMD тоже ее поддерживают.

Название функции – «Улучшенное состояние простоя» намекает на то, что она является усовершенствованием стандартного состояния простоя ЦП (С1), которое описывается стандартом энергосбережения ACPI. Расширенный вариант этого состояния гарантирует еще большее снижение энергопотребления во время простоя, во многом благодаря тому, что он позволяет уменьшать не только частоту процессора, но и его напряжение. Кроме того, важным преимуществом C1E является то, что данное состояние может регулироваться ЦП автоматически, без помощи операционной системы.

Вариант Auto подразумевает включение опции, вариант Disabled – выключение.

Стоит ли включать функцию?

Рекомендуемым значением для опции является значение Auto, поскольку включение опции будет способствовать более эффективному расходованию энергии, потребляемой ЦП и снижению его тепловыделения. Однако если вы хотите, чтобы процессор не использовал данный режим, то вам следует отключить опцию, выбрав значение Disabled. Потребность в отключении опции может возникнуть, например, при разгоне ЦП, поскольку включенная функция Enhanced Halt State может приводить к нестабильности работы разогнанного процессора.

Не прошло недели с момента публикации предыдущего материала на тему технологий управления энергопотреблением современных процессоров, как в распоряжении нашей тестовой лаборатории оказался процессор Intel Pentium 4, а неделей позже — Intel Xeon с новой ревизией ядер Prescott и Nocona, соответственно (степпинг E0, сигнатура CPU > Согласно имеющейся документации, «улучшенный режим простоя» (C1E) представляет собой режим работы физического процессора с низким энергопотреблением, вхождение в который осуществляется при «усыплении» обоих логических процессоров (посредством выполнения инструкций HLT или MWAIT) при задействовании данной технологии со стороны BIOS. В чем же отличие данного режима пониженного энергопотребления от «обычного» Halt State (C1)? А в том, что в этом случае процессор способен динамически понижать коэффициент умножения частоты системной шины (FID) и уровень питающего напряжения (VID), и восстанавливаться до состояния максимальной производительности (номинальных FID/VID) по мере необходимости, причем — совершенно автоматически (без вмешательства со стороны операционной системы). Можно сказать, C1E представляет собой нечто среднее между довольно старой технологией ODCM, которая, как мы показали, автоматически снижает эффективную частоту процессора посредством ее модуляции в режиме простоя, и новой серверной технологией Enhanced SpeedStep (DBS), способной изменять эффективную частоту и питающее напряжение процессора, но не автоматически, а «по запросу».

Что ж, теперь самое время увидеть новую технологию в действии. Для этого используем нашу утилиту RMClock, которая с момента выхода предыдущей публикации уже успела «обрасти» дополнительными возможностями — в частности, специфических настроек функций управления энергопотреблением процессоров Intel Pentium 4, Xeon и Pentium M, позволяющими нам отныне обойтись без вспомогательных утилит вроде CPUMSR.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Прежде чем переходить к обсуждению результатов, нам следует сделать одну важную оговорку — поступивший в наше распоряжение процессор оказался инженерным образцом (как сообщает Intel Processor ID Utility). В связи с чем вполне можно ожидать, что поведение серийных образцов может отличаться от наблюдаемого в нашем сегодняшнем тестировании.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Второй важный момент — определение наличия технологии C1E пока что реализовано исключительно «методом тыка», в связи с чем носит предположительный характер (тем не менее, его функциональность проверена на практике).

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Переходим к главным закладкам приложения — так они выглядят после нескольких минут работы приложения в отсутствие загрузки процессора. По левой картинке видно, что процессор поддерживает технологии TM1, TM2, ODCM и C1E, из которых в данный момент (т.е. по умолчанию) задействованы только TM2 и C1E. Действие последней заметно уже здесь — для этого достаточно сравнить текущие значения FID и VID процессора с номинальными. Первое находится на минимальном уровне, второе — где-то посередине между минимумом и максимумом. Динамика изменений FID/VID отчетливо видна на правой картинке — при минимальной нагрузке на процессор FID остается на постоянно низком уровне (14x), VID колеблется в довольно широких пределах, а его средняя величина составляет примерно 60% от номинальной. Отметим, что изменения VID, вообще говоря, могут и не отражать реальные изменения питающего напряжения процессора, поскольку VID — это всего лишь значение напряжения, которое процессор запрашивает для собственного питания, а материнская плата в принципе вольна сделать с этим запросом все, что угодно (прежде всего, вообще ничего не менять). Тем не менее, в наших тестах изменение реального напряжения процессора также фиксировалось (с помощью утилиты Hardware Monitor из набора Intel Desktop Utilities, которая опирается на показания сенсоров материнской платы), причем последнее было занижено примерно на 0.1V относительно значений VID.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Итак, с FID и VID все замечательно, однако мы не можем пройти мимо одной очень важной детали — частоты процессора как таковой. Последняя, как «подлинная», измеренная по TSC, так и «эффективная» («частота троттлинга») как бы остается на… постоянно высоком уровне. Точнее, «частота троттлинга» попадает в область 3590…3600 МГц, что всего на 10 МГц ниже номинальной частоты. Ничего удивительно в этом, необычном на первый взгляд явлении, на самом деле нет. Учитывая саму природу технологии C1E (она активизируется только при вхождении обоих логических процессоров в состояние C1/HALT), не существует никакой возможности увидеть ее в действии. Ибо даже самые точные методы измерения частоты процессора в момент измерения неизбежно потребуют осуществить переход процессора из «спящего» состояния C1 в «рабочее» состояние C0, при котором восстанавливается его полная частота.

Ради интереса, попробуем отключить технологию C1E с помощью закладки настроек процессора.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Результат весьма показательный — отключение C1E моментально сопровождается выставлением максимальных значений FID и VID в качестве текущих, после чего они остаются на постоянном уровне, независимо от загрузки процессора. А «эффективная частота» процессора стабилизируется на уровне, соответствующем его «истинной» (номинальной) частоте — 3600 МГц.

Следующий эксперимент — восстанавливаем функциональность C1E и подаем на процессор переменную нагрузку, имитируемую простым модельным приложением.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Кривые FID/VID убедительно показывают, что процессор способен быстро переключаться между состояниями минимальной и максимальной производительности. При этом количество состояний FID, судя по всему, всего два (начальное и конечное), тогда как изменения VID могут происходить через множество промежуточных состояний (с шагом в 0.0125В).

Таким образом, технология «усовершенствованного режима простоя» — весьма перспективное нововведение, призванное значительно снизить потребляемый процессором ток в режиме простоя в гораздо большей степени по сравнению с обычным режимом C1 (HALT). В связи с введением этой технологии может вполне закономерно возникнуть вопрос: если есть полностью автоматическая C1E (которой, кстати, оснащены и новые процессоры Xeon Nocona), зачем нужен Enhanced SpeedStep для серверов (DBS), требующий «ручного» (программного) управления? Ответ на этот вопрос весьма прост: C1E — действительно полностью автоматическая технология, она способна снижать энергопотребление процессора только при полном бездействии системы и моментально восстанавливать полную производительность при малейшей загрузке процессора, в то время как DBS может принудительно снижать потребляемую процессором мощность в условиях штатной работы, в т.ч. при значительной загрузке системы (если управляющее ПО «решит», что полная мощность сервера в данный момент не требуется). Технология автоматического термального мониторинга №2

Внимательный читатель обязательно заметит: технология Thermal Monitor 2 уже обсуждалась в предыдущей статье, так зачем же снова уделять ей внимание? Ответ на сей вопрос будет достаточно простым и неожиданным — уже после тестирования обнаружилось, что исследованная модель Xeon Nocona (степпинг D0, сигнатура CPUID — 0F34h), оказывается, на самом деле… не поддерживает технологию TM2! Точнее, сказано так: «TM2 is enabled, but NOT supported». И ведь действительно Enabled — в CPUID Feature Flags указано наличие этой технологии. Да еще и прекрасно работает, как показывают тесты. Но, в то же время, «не поддерживается»… Вот мы и решили исследовать эту технологию на том процессоре (пусть и не серийном образце), который ее официально поддерживает.

Методика ее исследования будет точно такой же: подаем 100% нагрузку на оба логических процессора, после чего останавливаем вентилятор на кулере процессора.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Результат выглядит вполне ожидаемо (а картина аналогична той, которую мы получили на процессоре Xeon) — по достижении процессором температуры 73°C наблюдается снижение «эффективной» частоты процессора наряду с плавным снижением его загрузки. По графику FID/VID видно колебание FID между двумя уровнями — минимальным и максимальным. В то же время заметно, что переключение VID может осуществляться через промежуточные состояния (как и в технологии C1E, только изменения происходят гораздо резче).

Примерно через минуту после остановки вентилятора технология TM2 начинает работать на полную мощность, при этом достигается «эффективная частота» процессора 2.8 ГГц, загрузка стабилизируется на уровне 77.7%, а FID/VID — на уровне целевых значений (TM2 Target FID/VID) 14x и 1.2V, соответственно.

Возобновление активного охлаждения процессора сопровождается рассмотренными выше изменениями, протекающими в обратном порядке.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Для полноты картины, мы повторили данный тест, предварительно запустив утилиту стороннего производителя ThrottleWatch (учитывая, что на момент ее выпуска у нас уже не было возможности исследовать ее поведение при срабатывании TM2). Результат очевидный — ThrottleWatch способна как обнаружить, так и отследить момент срабатывания/выхода из режима TM2, однако ее функциональность в других режимах «троттлинга» процессора по-прежнему остается под вопросом. Новая ревизия ядра Nocona процессоров Intel Xeon

Напоследок, рассмотрим аналогичную ревизию E0 (CPU >

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Итак, новая ревизия ядра Nocona поддерживает все пять «термальных» технологий — от «древних» ODCM и TM1 до новых и новейших TM2, DBS и C1E. Из них на момент запуска приложения включены DBS (кстати, заметим, что поддержку технологии серверного Enhanced SpeedStep можно включить/выключить в настройках BIOS; кроме того, она автоматически включается утилитой RMClock при ее запуске) и, как это ни странно, старый вариант термического троттлинга — механизм автоматического термального мониторинга №1 (TM1), в противоположность 3.6-ГГц процессору Pentium 4. Что интересно, настройки целевых значений FID/VID для TM2 выставлены BIOS-ом корректно (это можно увидеть по Minimal FID/VID), однако сама технология почему-то не включена по умолчанию. Наконец, заметим, что C1E по умолчанию также отключена (напомним, ее включение/выключение — также задача BIOS), что отчетливо видно по правому скриншоту: значения FID/VID не меняются с течением времени. Можно предположить, что «невключение» C1E на серверной платформе продиктовано соображениями максимальной производительности (минимального времени отклика сервера на запрос): из общих соображений очевидно, что как вход в состояние C1E, так и выход из него сопровождаются большими задержками по сравнению со входом в/выходом из обычного состояния C1 (HALT), в связи с необходимостью переключения режимов работы процессора (FID/VID) в сторону меньшего энергопотребления и обратно.

Как бы там ни поступал производитель процессоров, чипсетов и материнских плат со своей продукцией, нам ничего не мешает включить интересующие нас настройки вручную, с помощью закладки специфических настроек процессора (Advanced) утилиты RMClock. Включаем TM2 (его, в принципе, можно и не включать), C1E и смотрим на результат.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

C1E в действии. «Коэффициент умножения» процессора упал до минимума — 14x (т.е., согласно нашей рабочей гипотезе, включилась модуляция частоты с циклом полезного действия процессора 77.7%), напряжение ядра начало «прыгать» между минимумом и максимумом, находясь большую часть времени на уровне 1.237V. Эффективная частота процессора снизилась, ее минимальный уровень находится вблизи 3470 МГц. Итак, технология C1E функционирует в процессорах Xeon (Nocona) корректно.

Посмотрим теперь, как сочетаются две новейшие функции управления режимами работы процессора — серверный Enhanced SpeedStep (DBS) и Enhanced Halt State (C1E) между собой, тем более что такую картину мы можем увидеть в настоящее время только на последних процессорах Intel Xeon. Для этого выставим в RMClock режим управления производительностью процессора (P-State Profile) Minimal, предварительно выставив минимальные значения FID/VID как 14x и 1.2V, соответственно.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Результат налицо: эффективная частота снизилась до

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Поведение процессора в этом режиме весьма интересно: несмотря на принудительное выставление максимальных FID/VID, C1E явно «берет верх» над Enhanced SpeedStep — эффективная частота процессора снижается, FID и VID колеблются между минимальном и максимальном уровнями. Т.е. теперь «как бы отключилась» не C1E, а DBS. Проведем еще один эксперимент: оставим режим производительности Maximal, но… снизим до минимума питающее напряжение (в отсутствие загрузки процессора это вполне можно сделать), т.е. выставим FID/VID как 18x и 1.2V.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Вот теперь C1E действительно отключилась, полностью передав управление технологии DBS. Отсюда можно сделать интересный вывод: для того, чтобы технология C1E могла функционировать, напряжение процессора (VID) должно, пусть даже на самую малость (0.0125В), но отличаться от минимально возможного (задаваемого в TM2 Target VID). Иными словами, под различными состояниями производительности/энергопотребления процессора для C1E в первую подразумеваются значения VID, а значения FID для нее вторичны. Подводя итоги

В нашей предыдущей статье мы начали, а в настоящей — завершили рассмотрение современных технологий управления производительностью и энергопотребления процессоров Intel Pentium 4 (Prescott) и Intel Xeon (Nocona). Основной вывод уже был сделан ранее — все рассмотренные технологии, начиная с первой ODCM, и заканчивая последними Enhanced SpeedStep (DBS) и Enhanced Halt State (C1E), по всей видимости, имеют в своей реализации общую идейную основу — модуляцию тактовой частоты процессора (цикла полезного действия). Может показаться, что это — своего рода «нечестность», обман потребителя. Разумеется, это не так, и мы не утверждали ничего подобного. На самом деле, это — всего лишь один из возможных (и наиболее простых) способов реализации упомянутых технологий, но он не менее эффективный, чем «более честные» способы. К тому же, не следует забывать, что это одна из возможных точек зрения (автора статьи), с которой можно и не соглашаться. Можно придумать и альтернативную точку зрения, гораздо более «правильную» с точки зрения официальной документации Intel.

Какова же возможная альтернатива? Можно предположить, что, поскольку некоторые блоки процессора (например, арбитры шины, асинхронные префетчеры и пр.), скорее всего, не могут легко осуществлять переход между различными скоростями функционирования, инженеры Intel, скорее всего, «разделили» процессорное ядро на несколько независимо тактируемых составляющих (либо за счет нескольких PLL, либо за счет делителей частоты, преобразующих опорную тактовую частоту). Часть из этих составляющих всегда функционирует на полной частоте (в эту часть попадает и Time Stamp Counter, на показаниях которого основан общепринятый метод измерения тактовой частоты процессора), тогда как остальные части (исполнительные модули) могут тактироваться меньшей частотой. При этом, правда, не совсем понятно, зачем инженеры Intel решили тактировать TSC полной частотой, тогда как счетчики производительности процессора (Performance Monitoring Counters, PMC) работают на «уменьшенной» частоте?

Возможные объяснения этого факта, равно как и выбор между представленными точками зрения оставим на откуп читателю. Со своей стороны отметим, что в ходе нашего исследования нам не удалось обнаружить каких-либо экспериментальных свидетельств в пользу второй, более «официальной» гипотезы. Разумеется, у нас нет явных свидетельств и в пользу нашей точки зрения, за исключением того, что она не противоречит экспериментальным фактам. Поэтому займемся «доказательством от противного». Среди основных возражений против нашей точки зрения можно наметить, во-первых, некорректность методики определения частоты процессора, а во-вторых, фактически, наше заявление о том, что процессоры Pentium 4 и Xeon могут работать на полной частоте при пониженном напряжении питания (в режимах TM2, DBS и C1E).

Начнем с первого утверждения. Корректность определения фактической частоты процессора не вызывает сомнений — этим методом пользуются все без исключения системные утилиты (CPU-Z, WCPUID), наконец, сама операционная система, а также… Intel Processor Identification Utility! Приведенный ниже скриншот получен на процессоре Intel Xeon 3.6 ГГц при включении технологии Enhanced SpeedStep.

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Мы полагаем, картина не требует пояснений: частота процессора измерена утилитой по TSC (3.6 ГГц), а частота системной шины — простым делением ее на текущий «коэффициент умножения» 14x, что приводит к неправильному конечному значению 1028 МГц и красноречивой надписи «Overclocked!». Итак, если «неправильным» методом пользуются и утилиты Intel, что же тогда следует считать «правильным» методом? Применение формул вида

FSB_freq = TSC_freq / Startup_FID
CPU_freq = FSB_freq * Current_FID,

т.е. банальное умножение частоты системной шины процессора на текущий «коэффициент умножения»? (именно этот метод, по всей видимости, использовался при демонстрации технологии DBS на IDF 2004 Russia) Извините, но это уже не подлинное измерение, а натуральный подгон, выдача желаемого за действительное. К тому же, этот метод будет явно не универсальным, т.е. непригодным для любого x86-совместимого процессора.

Перейдем ко второму утверждению. На первый взгляд, оно очевидно: снижение питающего напряжения процессора (при срабатывании TM2, а также задействовании Enhanced SpeedStep и Enhanced Halt State) непременно должно сопровождаться снижением реальной тактовой частоты процессора. Но это лишь на первый взгляд — факты говорят совсем о другом. Прежде всего, взглянем на последний скриншот в предыдущем разделе — по нему четко видно, что процессор Intel Xeon 3.6 ГГц способен работать на полной частоте (F >

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

halt on в биосе что это такое. Смотреть фото halt on в биосе что это такое. Смотреть картинку halt on в биосе что это такое. Картинка про halt on в биосе что это такое. Фото halt on в биосе что это такое

Смотрите, что происходит: процессор «уверен», что он по-прежнему работает в штатных условиях, в связи с чем динамически управляет своим питающим напряжением в режиме простоя благодаря технологии C1E. Тогда как его реальная частота — как подлинная, так и эффективная — равны 3.74 ГГц. Получается, что процессоры Pentium 4 и Xeon действительно могут работать на полной частоте при пониженном напряжении питания, если они находятся в режиме простоя (C1/C1E).

Таким образом, приведенные выше факты, хотя и явно не подтверждают, но дополнительно подкрепляют наш вывод о единой основе реализации функций управления производительностью и энергопотреблением процессоров Intel Pentium 4 и Xeon.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *