Лигнин гидролизный что это такое в медицине расшифровка
Лигнин Гидролизный
Химическое название
Сложный трехмерный сетчатый биополимер, ароматической природы. Не существует общей структурной формулы, равно как и названия для Лигнина Гидролизного.
Химические свойства
Данное вещество представляет собой аморфное порошкообразное соединение. Цвет: различные оттенки коричневого. Соединение обладает специфическим запахом. Молекулярная масса от 5000 до 10000. В Лигнине Гидролизном самого лигнина – порядка 50-80%, все остальное — примеси (трудногидролизуемые полисахариды, смолистые вещества, зольные ферменты). Средство плохо растворимо в воде и органических растворителях.
В сухом виде вещество хорошо горит, при распылении взрывоопасно. Температура воспламенения 195 градусов Цельсия, тлеть средство начинает при 185 градусах.
Гидролизный Лигнин нашел широкое применение в различных отраслях науки и промышленности.
Фармакологическое действие
Сорбирующее, антиоксидантное, антидиарейное, гиполипидемическое.
Фармакодинамика и фармакокинетика
В желудочно-кишечном тракте вещество адсорбирует различные микроорганизмы и продукты их жизнедеятельности, ксенобиотики, токсины, радиоактивные изотопы, аллергены, аммиак, тяжелые металлы. Средство оказывает положительное влияние в целом на функционирование ЖКТ, тем самым, компенсируя недостаток пищевых волокон, нормализуя микрофлору.
Данное соединение не метаболизируется, после проникновения в желудочно-кишечный тракт выводится в неизменном виде.
Показания к применению
Лекарственное средство используют:
Противопоказания
Препараты на основе Лигнина Гидролизного противопоказаны:
Побочные действия
Обычно вещество хорошо переносится. Редко могут возникнуть: запор, реакции гиперчувствительности, несварение желудка.
Лигнин Гидролизный, инструкция по применению (Способ и дозировка)
Средство выпускают в виде таблеток, гранул, пасты или порошка. В любом случае показан прием вещества перед едой, несколько раз в день.
Перед употреблением вещество необходимо растворить в 300-400 мл воды, перемешивая 2 минуты.
Дозировка устанавливается врачом в том или ином конкретном случае.
Как правило, взрослым назначают от 5 до 7 грамм в средства в день. Для детей, в зависимости от веса, суточная дозировка вдвое меньше.
Курс лечения определяет врач.
Передозировка
Не отмечено случаев передозировки лекарственным средством.
Взаимодействие
Вследствие способности лигнина абсорбировать лекарственные средства, он может снижать их эффективность, замедлять всасывание в ЖКТ.
Условия продажи
Рецепт на препарат не требуется.
Особые указания
При тяжелом течении инфекционных заболеваний рекомендуется использовать средство в составе комплексной терапии.
Следует соблюдать временной интервал между приемом лекарства и прочих препаратов.
При длительном использовании рекомендуется сочетать средство с витаминами группы В, Е, К, D и кальцием.
При беременности и лактации
Лекарство безопасно в использовании у беременных и кормящих женщин.
Лигнин гидролизный что это такое в медицине расшифровка
ВВЕДЕНИЕ
В современном мире энтеросорбция стала одной из самых актуальных проблем в медицине. Если не так давно самым часто встречающимся и использующимся в медицинской практике энтеросорбентом был активированный уголь, то сейчас наука, используя новые открытия, смогла создать большой круг препаратов для выведения из организма токсинов и вредных веществ.
Энтеросорбенты — широко используемый в России класс препаратов с сорбционно-детоксикационными свойствами. Натуральный состав, широкий ассортимент наименований, представленных на фармацевтическом рынке страны, невысокие цены, сделали их популярными как среди врачей разных специальностей, так и среди пациентов 23.
Термин «энтеросорбент» произошел от слова «sorbens» (поглощающий). Энтеросорбенты способны связывать в желудочно-кишечном тракте (ЖКТ) экзогенные и эндогенные соединения, а также надмолекулярные структуры и клетки [23]. История применения энтеросорбентов началась в глубокой древности: врачеватели Древнего Египта, Индии, Греции использовали древесный уголь, глину для лечения отравлений, дизентерии, желтухи и других заболеваний. Целительные свойства энтеральных адсорбентов отмечали Гиппократ и Авиценна [24].
В период Второй мировой войны адсорбенты на основе лигнина широко применяли для лечения диареи у германских военнослужащих. С открытием антибиотиков интерес к сорбентам существенно снизился. Однако, появление препаратов с высокой сорбционной емкостью, способствующих удалению из организма метаболитов и токсинов, а также успешный опыт использования подобных лекарственных средств для выведения радионуклидов у участников ликвидации последствий аварии на Чернобыльской АЭС, стали причиной новой волны интереса к энтеросорбции 14.
Во многих литературных источниках сформулированы современные требования к энтеросорбентам, которые необходимо учитывать врачу при назначении препарата 19:
• отсутствие токсических свойств;
• безопасность (нетравматичность) для слизистых оболочек;
• хорошая эвакуация из кишечника;
• хорошие функциональные (сорбционные) свойства;
• поддержание кишечной микрофлоры;
• доступная лекарственная форма.
Наблюдается тенденция использования в качестве энтеросорбентов гетерогенных по составу биополимеров 4. Наличие гидроксильных, фенольных и карбоксильных групп в биополимерах обусловливает межмолекулярное взаимодействие за счёт водородных связей с функциональными группами различных по природе токсинов [6]. Для биополимеров характерны высокая водоудерживающая способность, ионообменные и другие специфические свойства. Биополимеры способны взаимодействовать с белками, ферментами, гормонами, продуктами распада углеводов, пептидами и аминокислотами, жирными и другими кислотами при биотрансформации компонентов пищи и кормов в желудочно-кишечном тракте человека и животного. Характер этих взаимодействий зависит от состава биополимеров, надмолекулярной структуры и кристалличности [1]. В этой связи представляется весьма перспективным в качестве энтеросорбента для микотоксинов применение целлюлозы и лигнина.
Среди выделенных лигнинов различают препараты нерастворимых и растворимых лигнинов. Нерастворимые лигнины сохраняют сетчатую структуру. Растворимые лигнины, представляющие собой фрагменты сетки, имеют разветвленную структуру с высокой степенью разветвленности и неоднородных по молекулярной массе.
Лигнин – это органический гетероцепной кислородосодержащий полимер, но в отличие от полисахаридов, относящихся к полиацеталям, у лигнина отсутствует единый тип связи между мономерными звеньями. В структурных единицах лигнина содержаться различные полярные группы и в том числе способные к ионизации фенольные гидроксилы и в небольшом числе карбоксильные группы, вследствие чего лигнин является полярным полимером, проявляющим свойства полиэлектролита [14].
Лигнин – аморфный полимер, как природный, так и выделенный. Из-за высокой степени разветвленности макромолекулы выделенных растворимых лигнинов имеют глобулярную форму, и такие препараты представляют собой порошки. В лигнине, благодаря наличию большого числа гидроксильных и других полярных групп, значительно развиты водородные связи (внутри- и межмолекулярные) [15].
Лигнин в промышленности получают как отход при производстве целлюлозы (сульфатный лигнин, лигносульфоновые кислоты) и гидролизе растительных материалов (гидролизный лигнин) 17. Одно из направлений применения гидролизного лигнина – это сорбенты медицинско-го назначения. В 1923 году в Германии впервые были разработаны сорбенты на основе лигнина. В нашей стране аналогичная разработка появилась в 70-х годах. Препараты на основе лигнина успешно использовались в зоне чернобыльской аварии.
Цель работы: исследовать сорбционные свойства лигнинов и возможность их применения в качестве энтеросорбентов для профилактики заболеваний органов пищеварения и предотвращения метаболических расстройств.
Задачи исследования:
1) исследовать перспективы применения энтеросорбционных материалов на основе лигнинов для медицины;
2) проанализировать строение лигнинов и их структуру;
3) изучить энтеросорбционные свойства лигнинов;
4) проанализировать адсорбционные характеристики лигнинов и их изучение физическими и физико-химическими методами.
I. ОСНОВНАЯ ЧАСТЬ
1.1. Лигнины как перспективные материалы для медицины
Основные области применения лигнинов в медицине: выведение аллергенов, токсинов, патогенных микроорганизмов (вирусов, бактерий, грибков), восстановления нормальной микрофлоры желудочно-кишечного тракта; при аллергодерматозах, дисбактериозе кишечника, возникающего в результате применения антибактериальных препаратов, воспалительных изменениях, возникающих в стенке кишечника в случае наличия кишечной инфекции различной этиологии, а также при заболеваниях желудочно-кишечного тракта 6.
Одним из направлений использования гидролизного лигнина является получение на его основе медицинских энтеросорбентов. Современная промышленность производит медицинские лигнины под названием полифепаны и полифаны, способные адсорбировать в желудочно-кишечном тракте бактерии, бактериальные токсины, яды, аллергены, соли тяжёлых металлов и др. 8.
Как известно, применение энтеросорбентов является одним из способов регулирования уровня половых стероидных гормонов в организме человека, что позволяет уменьшить риск развития онкологических заболеваний.
Состав гидролизного лигнина в общем случае малопредсказуем и может меняться в зависимости от состава исходного растительного сырья. Кроме негидролизируемого остатка – собственно лигнина, гидролизный лигнин содержит органические кислоты, олигосахара, легко- и трудногидролизи-руемые полисахариды, смолы, жиры, фенольные соединения, а также остаточную серную кислоту.
Медицинские энтеросорбенты по химическому составу, безусловно, более чистые, чем исходные гидролизные лигнины – в них отсутствует остаточная кислота, существенно меньше зольных и смолистых веществ, хотя количество основных компонентов предопределяется исходным сырьём 2.
Повышение содержания лигнина в медицинских препаратах положительно влияет на их сорбционную способность и, соответственно, качество препаратов.
Препараты на основе неорганических соединений («Смекта», «Полисорб»), а также активированный уголь не пригодны для длительного применения, поскольку относятся к лекарственным средствам, которые рекомендуются применять только при острых отравлениях.
Высокая химическая чистота МКЦ, отсутствие побочного действия на организм людей и животных в сочетании с другими ценными качествами (нерастворимость в воде, органических растворителях, способность диспер-гироваться в воде и масле, отсутствие запаха и вкуса, химическая стойкость, неволокнистая структура и т.п.) позволяют использовать ее для таблетиро-вания в смеси со многими фармацевтическими препаратами 16. Особо ценным является свойство МКЦ быть связующим в сухом состоянии, что позволяет получать таблетки прямым прессованием (наиболее экономичным способом). Кроме таблеток, МКЦ может быть использована для производст-ва капсул, гранул, порошков, микрогранул и других лекарственных форм, например, аспирина, аскорбиновой кислоты, анальгетиков, поливитаминов, аминокислот, хинина, стероидов и др.
1.3. Изучение адсорбции лигнинов на поверхности синтетических и природных сорбентов
При получении углеродных адсорбентов методы термохимической активации различных сырьевых материалов постепенно вытесняют широко распространенные, в недавнем прошлом, методы парогазовой активации. При термохимической активации и получении, таким образом, активных углей (АУ) различного качества используется главным образом некарбонизованные исходные материалы, к которым относятся в первую очередь древесные опилки и торф. Превращение такого сырья в АУ происходит под воздействием дегидратирующих агентов при высоких температурах. При этом кислород и водород избирательно и полностью удаляются из углеродсодержащего материала с одновременной его карбонизацией и активацией. К дегидратирующим агентам может быть отнесѐн целый ряд веществ, однако наибольшее применение получила ортофосфорная кислота. Гидроксид натрия также может быть отнесѐн к дегидратирующим агентам, использование которого ограничивается, в первую очередь, по причине высоких расходов на активацию и сложностью регенерации из отработанных промывных растворов.
На основании накопленных экспериментальных данных можно предположить, что расход NaOH на активацию древесных материалов можно существенно снизить за счет их предварительной карбонизации, что является действенным регулятором не только расхода реагента, но и адсорбционных свойств получаемых АУ. Поэтому изготовление АУ состоит из двух этапов: карбонизация сырья, в результате которой образуется уголь–сырец и его дальнейшая активация. В итоге уголь-сырец превращается в уголь, отличающийся развитой пористой структурой и поэтому обладающий огромной внутренней поверхностью.[7]
Были реализованы 2 серии опытов с использованием хвойных опилок в качестве сырьевого материала для синтеза АУ. Все исследования проводили методом планированного эксперимента. Первая серия была проведена с использованием 2%-ной ортофосфорной кислоты с целью увеличения выхода. В результате этой серии были сделаны выводы, что температура предпиролиза должна находиться на уровне 480°С, температура пиролиза 700 °С. В этих условиях наблюдаются самые высокие адсорбционные свойства и по МГ и по йоду, а значит их следует принять оптимальными. Расход щелочи не оказывает существенного влияния на сорбционные свойства, а значит, его следует зафиксировать на уровне 100% по отношению к сырью. При низких температурах пиролиза (550 °С) с повышением температуры предпиролиза сорбционные свойста АУ снижаются.
Мировой опыт свидетельствует, что производство и потребление активных углей (АУ) имеет устойчивую тенденцию к росту. Большой ассортимент адсорбентов можно получать на основе крупнотоннажных отходов химической и механической переработки древесины: опилок, коры, отходов лесозаготовок, осадков сточных вод, технических лигносульфонатов,
Следует отметить, что в синтезе активных углей в настоящее время методы химической активации находят все большее распространение. Это объясняется тем, что они позволяют получать адсорбенты со строго заданными параметрами пористой структуры и с высокими кинетическими показателями адсорбционных процессов. Так же к преимуществам способа следует отнести сравнительно короткое время активирования сырья, большой выход углеродного остатка, высокие адсорбционные свойства активного угля.
Заключение
Энтеросорбция – очень востребованный метод очистки организма от токсинов. Дальнейшее развитее энтеросорбции позволит медицине вылечить многих, возможно, тяжелобольных людей. Лигнин – биополимер, который по своим свойствам, – идеальный энтеросорбент.
Несмотря на то, что расширенное применение лигнина и лигноцеллюлозных материалов началось не так давно, в этой сфере уже многое открыто. Развитие темы: «Лигнин как энтеросорбент» должно быть плодотворным.
Таким образом, энтеросорбенты, несмотря на их весьма древнее применение в медицине, по-прежнему остаются актуальными препаратами. Использование этой группы препаратов шагнуло далеко за пределы гастроэнтерологии и позволяет эффективно оказывать помощь пациентам с различными заболеваниями, в том числе таких «болезней цивилизации», как сердечно-сосудистая патология, нарушения липидного и углеводного обменов. Очень ценно, что натуральный и безопасный состав препаратов полезен и здоровым людям с целью профилактики заболеваний органов пищеварения и предотвращения метаболических расстройств: позволяет достигать более высокого качества жизни — приоритетной задачи медицины.
Выводы
Показано, что лигнины в экспериментальных исследованиях показали антиоксидантные и противовоспалительные свойства, что позволяет надеяться на эффективность этих препаратов в комплексной терапии онкологических больных.
Установлено, что лигнины способны увеличивать лекарственное действие препаратов.
Cписок используемой литературы
3. Лепилова О.В., Алеева С.В., Кокшаров С.А. Сопоставление редуцирующей способности растворов альдоз // Журнал органической химии. 2012. Т. 48. Вып. 1. С. 88-93.
4.Базарнова Н.Г., Маркин В.И., Колосов П.В., Катраков И.Б., Калюта Е.В., Чепрасова М.Ю. Методы получения лигноуглеводных композиций из химически модифицированного растительного сырья // Российский химический журнал. 2011. Т. 55. №1. С. 4–9.
5. Оболенская А.В. Химия лигнина. СПб.: ЛТА. 1993. 80 с
7. Barret E.P., Joyner L.C., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms // J. Am. Chem. Soc., 1951. ⎯ Vol. 73.⎯ № 1. ⎯ P. 373−380.
8. Бондарев Е. В., Штрыголь С. Ю., Дырявый С. Б. Применение энтеросорбентов в медицинской практике. Провизор. Электрон. ресурс. 2008; 13. URL: http://www.provisor.com.ua/archive/2008/N13.
9. Палий И. Г., Резниченко И. Г. Современный взгляд на проблему энтеросорбции: выбор оптимального препарата. Новости медицины и фармации. 2007; 11: 217.
10. Урсова Н. И., Горелов А. В. Современный взгляд на проблему энтеросорбции. Оптимальный подход к выбору препарата. РМЖ. 2006; 19: 1391–1396.
11. Щербаков П. Л., Петухов В. А. Сравнительная эффективность энтеросорбентов при диарее у детей. Вопросы современной педиатрии. 2005; 4 (4): 85–89.
12. Николаев В. Г., Гурина Н. М. Энтеросорбция сегодня: сорбционные материалы и механизм действия. Электрон. ресурс. URL:http;//kiulong.cjm.ua/content/view/66/58.
13. Федорова О.В., Федулова Э.Н., Тутина О.А., Копейкин В.Н.,Коркоташвили Л.В. Патогенетическая сорбционная терапия эндогенной интоксикации воспалительных заболеваний кишечника у детей. Педиатрическая фармакология. 2009; 6 (5): 34–37.
14. Casdorph H. R. Hypercholesteremia. Treatment with cholestyramine, a bile acid sequestering resin. Calif Med. 1967; 106 (4): 293–295.
15. Новокшонов А.А., Соколова Н.В. Метод энтеросорбции и его клиническая эффективность в комплексной терапии ОКИ у детей. Вопросы современной педиатрии. 2011; 1: 140–147.
16. Prince D. M., Welschenbach M. A. Olestra: a new food additive.
J Am Diet Assoc. 1998; 98 (5): 565–569.
17. Gonzalez R., de Medina F. S., Martinez-Augustin O. et al. Antiinflammatory effect of diosmectite in hapten-induced colitis in the rat. Br J Pharmacol. 2004; 141 (6): 951–960.
18. WHO diarrhoeal Disease Control Program. Drugs in the management of acute diarrhoea in infants and young children. Report WHO/CDD/CMT/86.1. 1986.
19. Wingate D., Phillips S. F., Lewis S. J. et al. Guidelines for adults on self-medication for the treatment of acute diarrhea. Alimentary Pharmacology and Therapeutics. 2001; 15 (6): 773–782.
20. Szajewska H., Dziechciarz P., Mrukowicz J. Meta-analysis: smectite in the treatment of acute infectious diarrhoea in children.Aliment Pharm Therap. 2006; 23 (2): 217–227.
21. Боткина А. С. Применение диоктаэдрического смектита у детей с атопическим дерматитом. Вопросы современной педиатрии. 2008; 7 (2): 1–4.
22. Маев И.В., Самсонов А. А., Голубев Н. Н. Аспекты клинического применения энтеросорбента Неосмектин. РМЖ. Болезни органов пищеварения. 2008; 2: 62–64.
23. Липатникова И. А., Решетников В. И. Разработка состава геля Полисорба и его биофармацевтическая оценка. Фармация. 2004; 3: 34–35.
24. Химкина Л., Пантелеева Г., Копытова Т. Клиническая эффективность Полисорба МП в комплексной терапии хронических распространенных дерматозов. Врач. 2010; 1: 38–40.
25. Афонин А., Шокарев А., Левкович А. Комплексная терапия гипербилирубинемии у доношенных новорожденных с перинатальным поражением центральной нервной системы. Врач. 2010; 8: 58–59.
26. Емельянов С. И., Брискин Б. С., Демидов Д. А., Демидова Т. И.Влияние пектинсодержащего препарата на слизистую оболочку пищеварительного тракта при кишечной недостаточности. Эксперимент Клин Гастроэнтерол. 2012; 2: 67–72.
27. Ставицкая С. С., Стрелко В. В., Викарчук Б. М. и др. Оценка селективности сорбции ионов токсичных металлов композиционным сорбентом «Ультрасорб» и его компонентами. Эфферентная терапия. 2001; 7 (1): 60–63.
28. Алексеева А.А. Применение энтеросорбентов в комплексной терапии атопического дерматита. Вопросы современной педиатрии. 2012; 11 (2): 151–154.
29. Харченко Н. В., Черненко В. В. Оценка эффективности и переносимости препарата Лактофильтрум в лечении гастроэнтерологических больных с синдромом дисбактериоза кишечника. Мистецтво лікування. 2006; 9: 14–15.
30. Ныркова О.И., Алексеева Л.А., Бехтерева М.К., Бессонова Т.В.Роль энтеросорбции в терапии бактериальных диарей у детей. Вопросы современной педиатрии. 2011; 10 (2): 96–101.
Лигнин гидролизный
Фармдействие
Препарат растительного происхождения, получаемый из гидролизного лигнина. Связывает различные микроорганизмы, продукты их жизнедеятельности, токсины экзогенной и эндогенной природы, аллергены, ксенобиотики, тяжелые металлы, радиоактивные изотопы, аммиак, двухвалентные катионы и способствует их выведению через ЖКТ. Оказывает энтеросорбирующее, дезинтоксикационное, противодиарейное, антиоксидантное, гиполипидемическое и комплексообразующее действие. Компенсирует недостаток естественных пищевых волокон в пище человека, положительно влияя на микрофлору толстого кишечника и на неспецифический иммунитет. В отличие от антибактериальных ЛС не приводит к развитию дисбиоза.
Фармакокинетика
Выводится через кишечник в неизмененном виде.
Показания
Острые и хронические заболевания ЖКТ различной этиологии: диспепсические расстройства, пищевая токсикоинфекция, диарея, дисбактериоз кишечника, вирусный гепатит, дизентерия, сальмонеллез, холера, колиты.
Острые заболевания, сопровождающиеся интоксикацией, гестоз, печеночная и почечная недостаточность.
Аллергические заболевания (крапивница, ангионевротический отек, пищевая и лекарственная аллергия), нарушения липидного обмена (атеросклероз, ожирение), состояние после химио- и лучевой терапии.
Гинекологические заболевания (бактериальный кольпит, цервицит, бактериальный вагиноз, кандидоз).
Стоматологические заболевания (генерализованный пародонтит, периодонтит, стоматит).
Необходимость выведения радионуклидов и ксенобиотиков.
Противопоказания
Гиперчувствительность, запоры, анацидный гастрит.
С осторожностью. Сахарный диабет (для гранул, они содержат сахар).
Дозирование
Побочные эффекты
Аллергические реакции, запоры.
Особые указания
Интервал между приемами др. ЛС должен быть не менее 1 ч. Длительное применение сочетают с введением витаминов группы В, К, D, Е и препаратов Ca2+.
Лигнин. Что такое лигнин, происхождение, получение, свойства и применение лигнина
Происхождение и получение лигнина
Вместе с гемицеллюлозами он определяет механическую прочность стволов и стеблей. Лигнин обеспечивает герметичность клеточных стенок ( для воды и питательных веществ) и благодаря содержащимся в нем красителям определяет цвет одревесневевшей ткани.
Лигнин прочно физически и химически инкорпорирован в структуре растительной ткани и эффективное выделение его оттуда промышленными методами представляет весьма сложную инженерную задачу.
В гидролизной промышленности получают порошковый т.н. гидролизный лигнин.
В целлюлозном производстве образуются водорастворимые формы лигнина. Существуют две основные технологии варки целлюлозы, более распространенная сульфатная варка (щелочная) и менее употребляемая сульфитная (кислотная) варка.
Лигнин получаемый в сульфатном производстве, т.н. сульфатный лигнин в большой степени утилизируется в энергетических установках целлюлозных заводов.
В сульфитном производстве образуются растворы сульфитных лигнинов (лигносульфонатов), часть которых накапливается в лигнохранилищах, а часть уходит со сточными водами предприятия в реки и озера.
В английской литературе выделяют также:
В той или иной степени утилизацией лигнина занимаются сами производящие его предприятия, но гидролизный лигнин, сульфатный лигнин и лигносульфонаты присутствуют на рынке и как товарные продукты. Международных или российских стандартов на технические лигнины не существует и они поставляются по различным заводским техническим условиям.
Формула и химические свойства лигнина
Принято считать, что молекула лигнина состоит из атомов углерода, кислорода и водорода.
В литературе встречается несколько вариантов формулы лигнина.
Лигнины получаемые из разных растений значительно отличаются друг от друга по химическому составу.
Молекула лигнина неопределенно велика и имеет много разнообразных функциональных групп.
Общей структурной единицей всех видов лигнина является фенилпропан (C9H10), а различия связаны с разным содержанием функциональных групп.
При нормальных условиях лигнин плохо растворяется в воде и органических растворителях. В химических технологиях и в окружающей среде лигнин может участвовать в самых разнообразных химических рекациях и превращениях. Обладает биологической активностью.
Лигнин проявляет пластические свойства при повышенном давлении и температуре, особенно во влажном состоянии.
Утилизация лигнина в природе
Деградация полимерного лигнина происходит под воздействием внеклеточных ферментов-оксидоредуктаз грибов. К данным ферментам в первую очередь относятся лининолитические пероксидазы: лигнин-пероксидаза и Mn-пероксидза, а так же внеклеточная оксидаза – лакказа. Так же лигнинолитичекий комплекс грибов содержит вспомогательные ферменты, в первую очередь производящие перекись водорода для пероксидаз и активные фермы кислорода. Сюда включают такие ферменты как пиранозооксидаза, глюкзооксидаза, глиоксальоксидаза, алклгольарилоксидаза и целлобиозозодегидрогеназа.
Экономическое значение лигнина
Ежегодно в мире получается около 70 млн. тонн технических лигнинов. В энциклопедиях пишут о том, что лигнин является ценным источником химического сырья. К сожалению, пока это сырье организационно, экономически и технически не слишком и не всегда доступно.
Например, разложение лигнина на более простые химические соединения (фенол, бензол и т.п.) при сравнимом качестве получаемых продуктов обходится дороже их синтеза из нефти или газа. По данным International Lgnin Institute в мире используется на промышленные, сельскохозяйственные и др. цели не более 2% технических лигнинов. Остальное сжигается в энергетических установках или захоранивается в могильниках.
В некоторых исследованиях отмечается мутагенная активность технических лигнинов.
Таким образом в народохозяйственном балансе технические лигнины пока представляют собой значительную и постоянно растущую отрицательную величину.
Свойства гидролизного лигнина
Лигнин нетоксичен, обладает хорошей сорбционной способностью.
Некоторые направления применения гидролизного лигнина:
— производство топливных брикетов, в т.ч. в смеси с опилками, угольной и торфяной пылью;
— производства топливного газа, в т.ч. с выработкой электроэнергии в газопоршневых газогенераторах;
— производство брикетированных восстановителей для металлов и кремния;
— производство углей, в т.ч.активированных;
— сорбенты для очистки городских и промышленных стоков, сорбенты для разлитых нефтепродуктов, сорбенты тяжелых металлов, технологические сорбенты;
— сорбенты медицинского и ветеринарного назначения («Полифепан» и т.п.);
— порообразователь в производстве кирпича и др. керамических изделий (взамен опилок и древесной муки);
— сырье для выработки нитролигнина (понизителя вязкости глинистых растворов, применяемых при бурении скважин);
— наполнитель для пластмасс и композиционных материалов, связующее для композиционных материалов («Арбоформ», лигноплиты и т.п.);
— приготовление органических и органо-минеральных удобрений, структурообразователей для естественных и искусственных почв, гербицид при возделывании некоторых культур (бобовых);
— сырье для производства фенола, уксусной и щавелевой кислот;
— добавка в асфальтобетоны (приготовление лигнино-битумных смесей и пр).
Товарные лигносульфонаты получают упариванием обессахаренного сульфитного щелока и выпускают в виде жидких и твердых концентратов сульфитно-спиртовой барды (мол. масса от 200 до 60 тыс. и более), содержащих 50-90% сухого остатка. Лигносульфонаты имеют высокую поверхностную активность, что позволяет использовать их в качестве ПАВ в различных отраслях промышленности, например:
— в строительстве для укрепления низкопрочных материалов и грунтов, а также для обеспыливания покрытий дорожных покрытий, в качестве эмульгатора в дорожных эмульсиях;
— в сельском и лесном хозяйстве для противоэррозиооной обработки почв;
— в качестве сырья для производства ванилина;
— добавка для гранулирования пылящих материалов, антислеживатель.
Представляет собой раствор натриевых солей, характеризующихся высокой плотностью и химической стойкостью. Сульфатный лигнин в сухом виде представляет собой порошок коричневого цвета. Размер частиц лигнина, колеблется в широком интервале от 10 (и менее) мкм до 5 мм. Он состоит из отдельных пористых шарообразных частиц и их комплексов с удельно поверхностью до 20 м 2 /г.
В сульфатном лигнине промышленной выработки в среднем содержится, %: золы — 1,0—2,5, кислоты в расчете на серную — 0,1—0,3, водорастворимых веществ — 9, смолистых веществ — 0,3—0,4, лигнина Класона — около 85. Лигнин имеет достаточно постоянный функциональный состав. В сульфатном лигнине присутствует сера, массовое содержание которой составляет 2,0—2,5%, в том числе несвязанной — 0,4—0,9 %.
Термическая обработка сульфатного лигнина вызывает его разложение с образованием летучих веществ начиная с температуры 190 о С.
Сульфатный лигнин отнесен к практически нетоксичным продуктам, применяемый в виде влажной пасты не пылит и не пожароопасен.
Направления использования сульфатного лигнина:
— сырье для производства фенолоформальдегидных смол и пластиков;
— связующее для бумажных плит, картонов, древесностружечных и волокнистых плит;
— стабилизатор химических пен;
— пластификатор бетонов, керамических и огнеупорных изделий;
— сырье для производства активных осветляющих углей «типа коллактивита».
Литература о лигнине и его применениях
Лигнину и техническим лигнинам посвящена очень большая литература (десятки книг, сотни диссертационных работ и тысячи журнальных статей) на всех основных языках. Многие из них доступны и в интернете, см. например, «Лигнин» статья в Википедии.
Для получения первого впечатления можно использовать, например, следующие имеющиеся в сети книги:
— Химия лигнина, Ф.Э. Браунс, Д.А. Браунс, М. Лесная промышленность, 1964;
— Химия древесины и целлюлозы В.М.Никитин, А.В. Оболенская, В.П. Щеголев М. Лесная промышленность, 1978;
— Переработка сульфатного и сульфитного щелоков, под ред. П.Д. Богомолова и С.А. Сапотницкого, М. Лесная промышленность, 1989;
— Конструкионные материалы из лигнинных веществ, В.А. Арбузов, М. Экология, 1991.
Примечание. Существующие технологии переработки и делигнификации целлюлозного сырья связаны с большими капиталовложениями и не вполне совершенны с точки зрения экологии и др. факторов. Ученые давно изыскивают другие, более эффективные способы организации целлюлозных и биохимических производств, но пока эти разработки не нашли широких промышленных применений.
Уровень потребления и производства целлюлозы, бумаги и др. продуктов биохимии считаются для крупных стран важнейшими показателями развитости экономики в целом. Разумеется не биохимики вносят решающий вклад в загрязнение природы разнообразными отходами и вредными веществами, но там где есть крупные биохимические предприятия их вклад в загрязнение атмосферы и водных ресурсов может быть весьма существенным.
Очевидно, что руководители лесохимической подотрасли на протяжении десятилетий вполне успешно шантажировали государство, кажется что это явление продолжается и сейчас. Заложниками, как всегда, становятся работники предприятий, местные жители и «братья наши меньшие». Закрытие и перепрофилирование Приозерского ЦБК уже принесло заметное улучшение экологии Ладожского озера, однако большое количество приозерцев остаются без работы и по сей день, а город Приозерск находится в депрессивном состоянии.
Отрицать возможность использования лигнина в промышленности и сельском хозяйстве было бы неправильно. Десятилетиями сотни научных организаций во всем мире занимаются исследованиями и разработками в области утилизации свежеизвлеченного и хранимого лигнина. Многие из них в разные годы уже внедрены в промышленности. Дополнительную актуальность эти работы получают в свете возросшего в последние годы интереса к решению экологических проблем и к промышленному использованию всей гаммы растительных ресурсов (biorefinery).
Скорее всего решить проблемы рационального развития биохимических производств без государственного внимания не удастся, ибо рынок головы не имеет, а его нервные узлы как у дождевого червяка расположены в пищеводе. Что, собственно говоря, в очередной раз доказал «начавшийся в 2008 г.» экономический кризис. Произошел ли он при помощи знаменитой невидимой его руки или другого сокрытого члена значения не имеет.