tagget untagget что такое
Tagget untagget что такое
Часовой пояс: UTC + 3 часа
Tagged и UnTagged порты обьясните разницу!
Зарегистрирован: Пт сен 24, 2010 17:03
Сообщений: 9
Ребята обьясните пож. разницу в логике работы Tagged и UnTagged портов. Я так понимаю что UnTagged порт предназначен для включения конечного пользователя, а Tagged порт это что-то типа транка? |
Сотрудник D-LINK |
Зарегистрирован: Пт янв 21, 2005 11:52
Сообщений: 11206
Откуда: D-Link, Moscow
Зарегистрирован: Пт сен 24, 2010 17:03
Сообщений: 9
у меня нет возможности скачать с фтп вы б не могли на почту бросить, буду очень признателен! |
Сотрудник D-LINK |
Зарегистрирован: Пт мар 13, 2009 12:10
Сообщений: 989
Зарегистрирован: Вс дек 21, 2008 18:53
Сообщений: 1308
Ребята обьясните пож. разницу в логике работы Tagged и UnTagged портов. Я так понимаю что UnTagged порт предназначен для включения конечного пользователя, а Tagged порт это что-то типа транка? |
Зарегистрирован: Пт сен 24, 2010 17:03
Сообщений: 9
еще хотел уточнить, если я делаю порт маркированным для какой-то VLAN то соответственно я не смогу зайти на комутатор по этому порту, потому что : Часовой пояс: UTC + 3 часа Кто сейчас на форумеСейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 20 Введение в сети VLAN и тегированиеВведение в сети VLAN и тегирование Типичные сценарии использования Другие статьи по этой теме Введение в сети VLAN и тегирование Виртуальные сети VLAN позволяют администраторам сетей разделить всю физическую сеть на отдельные логические широковещательные домены. В стандартной сети Уровня 2 все хосты, присоединенные к коммутатору принадлежат одному и тому же широковещательному домену. Широковещательные домены могут быть физически разделены между разными коммутаторами только маршрутизаторами. По мере роста сети появляется необходимость в организации множества широковещательных доменов для сегментирования трафика. Это позволяет обеспечить требуемую логистику, повысить производительность и безопасность работы сети. Без использования VLAN, в типичном случае потребовалось бы, чтобы каждый сегмент сети имел свой собственный отдельный коммутатор и соответствующую инфраструктуру. Для связи между такими сегментами коммутации потребовалось бы не менее одного маршрутизатора. VLAN представляет собой широковещательный домен. Идентификация сетей VLAN осуществляется по их идентификаторам VLAN ID (целые числа в пределах от 0 до 4095). По умолчанию в любой сети уже создана одна VLAN, имеющая идентификатор VLAN 1. Каждый порт на коммутаторе или маршрутизаторе можно назначить сети VLAN (то есть, разрешить на этом порту отправку и прием трафика по данной VLAN). Пример. На коммутаторе, трафик, который посылается в порт, принадлежащий VLAN 100, может быть передан любому порту VLAN 100; этот трафик может также транспортироваться через магистральный порт (соединение между коммутаторами) на другой коммутатор и передаваться на все порты VLAN 100 этого коммутатора. Однако трафик не может быть передан на порты с другим идентификатором VLAN ID. Это позволяет администратору сети эффективно логически разделить коммутатор и при этом обеспечить: одновременную работу множества широковещательных доменов на одной и той же аппаратуре; изоляцию доменов; повышенную производительность сети за счет использования полностью отделенных коммутаторов. Вследствие того, что виртуальные сети VLAN являются протоколом Уровня 2, требуется маршрутизация Уровня 3, обеспечивающая связь между различными VLAN. Таким же образом работает маршрутизатор между сегментами, управляя трафиком между двумя подсетями на разных коммутаторах. В дополнение к этому, некоторые коммутаторы Уровня 3 поддерживают маршрутизацию между сетями VLAN и обеспечивают обмен трафиком на коммутаторах ядра, увеличивая производительность за счет устранения отправки трафика через маршрутизатор. Для того, чтобы сети VLAN можно было реализовать, необходима их поддержка на коммутаторах и маршрутизаторах. Для конфигурации сетей VLAN наиболее часто используется стандартный протокол IEEE 802.1Q., хотя существует и несколько протоколов, являющихся собственными разработками компаний. Коммутаторы, поддерживающие VLAN, часто называют «управляемыми», однако этот термин не всегда правильно используется специалистами по маркетингу и не гарантирует поддержку VLAN. Все маршрутизаторы, коммутаторы и беспроводные решения компании Ubiquiti поддерживают протокол VLAN 802.1Q и могут работать с аппаратурой других изготовителей, в которой используется этот протокол. Типичные сценарии использования Несколько примеров применений, в которых обычно используются виртуальные сети VLAN: Отделение трафика сети управления от трафика сервера или трафика конечного пользователя. Изоляция чувствительной инфраструктуры, сервисов и хостов, например, изоляция корпоративных пользователей от гостевых пользователей. Приоритезация трафика, реализация правил качества обслуживания QOS (Quality of Service) для конкретных сервисов, например, сервиса IP-телефонии (VoIP). Обеспечение сетевых сервисов для различных клиентов поставщика услуг интернета (ISP), центров обработки данных и офисных зданий, использующих одну и ту же инфраструктуру коммутации и маршрутизации. Логическое отделение групп хостов, безотносительно к их физическому положению, например, создание возможности использования сотрудниками отдела кадров одной и той же подсети и доступа к одним и тем же ресурсам сети, безотносительно к местонахождению этих сотрудников в здании. Определение и использование термина «тегирование VLAN» сильно отличается в зависимости от изготовителя оборудования. Для того, чтобы поддерживающее стандарт 802.1Q оборудование идентифицировало принадлежность пакета данных той или иной VLAN, в кадр Ethernet добавляется заголовок, специфицирующий VLAN ID. VLAN без тега: такие VLAN часто называют «родными VLAN». Любой трафик, отправленный хостом в порт коммутатора, не имеющий специфицированого VLAN ID, будет назначен VLAN без тега. Этот вариант чаще всего используется при соединении хостов, являющихся рабочими станциями или для IP-камер, не имеющих тега их собственного трафика; тег необходим лишь для связи с одной, конкретной VLAN. В это время порт может иметь только одну сконфигурированную VLAN без тега. VLAN с тегом: При назначении порту VLAN с тегом происходит добавление порта в VLAN, однако, чтобы весь входящий и исходящий трафик мог быть передан, он должен иметь тег с VLAN ID. Хост, подключенный к порту коммутатора, должен быть способен тегировать свой собственный трафик и сконфигурирован с тем же самым VLAN ID. VLAN с тегом (в отличие от VLAN без тега) на порту в типичном случае используются для подключения к хосту, которому необходим одновременный доступ к нескольким сетям по одному и тому же интерфейсу, например, к серверу, обслуживающему несколько отделений офиса. VLAN с тегом может также использоваться при соединении двух коммутаторов для ограничения доступа к VLAN от хостов за коммутатором (по соображениям безопасности). Магистраль: В типичном случае магистральный порт считается принадлежащим всем сетям VLAN; он будет принимать и передавать трафик по любому VLAN ID и обычно сконфигурирован для портов как до коммутаторов и маршрутизаторов, так и портов за ними. Хотя в каждом семействе продуктов Ubiquiti (EdgeMAX, UniFi, airMAX) используются свои способы конфигурации сетей VLAN, все продукты поддерживают один и тот же способ тегирования, работы без тегов, создания магистралей, управления трафиком и обеспечивают совместную работу. Дальнейшую информацию по конфигурации сетей VLAN конкретного продукта см. в других статьях по этой теме в разделе ниже. Другие статьи по этой теме Записки IT специалистаТехнический блог специалистов ООО»Интерфейс» VLAN для начинающих. Общие вопросы
Прежде чем продолжить сделаем краткое отступление о работе локальных сетей. В данном контексте мы будем говорить об Ethernet-сетях описанных стандартом IEEE 802.3, куда входят всем привычные проводные сети на основе витой пары. Основой такой сети является коммутатор (свич, switch), который работает на втором уровне сетевой модели OSI (L2). Коммутатор анализирует заголовки каждого входящего кадра и заносит соответствие MAC-адреса источника в специальную MAC-таблицу, после чего кадр, адресованный этому узлу, будет направляться сразу на определенный порт, если МАС-адрес получателя неизвестен, то кадр отправляется на все порты устройства. После получения ответа коммутатор привяжет MAC-адрес к порту и будет отправлять кадры только через него. Как мы уже говорили выше, к широковещанию прибегает сам коммутатор, когда получает кадр MAC-адрес которого отсутствует в MAC-таблице, а также узлы сети, отправляя кадры на адрес FF:FF:FF:FF:FF:FF, такие кадры будут доставлены всем узлам сети в широковещательном сегменте. А теперь вернемся немного назад, к доменам коллизий и вспомним о том, что в нем может передаваться только один кадр одновременно. Появление широковещательных кадров снижает производительность сети, так как они доставляются и тем, кому надо и тем, кому не надо. Делая невозможным в это время передачу целевой информации. Кроме того, записи в MAC-таблице имеют определенное время жизни, по окончании которого они удаляются, что снова приводит к необходимости рассылки кадра на все порты устройства. Чем больше в сети узлов, тем острее стоит проблема широковещания, поэтому широковещательные домены крупных сетей принято разделять. Это уменьшает количество паразитного трафика и увеличивает производительность, а также повышает безопасность, так как ограничивает передачу кадров только своим широковещательным доменом. Как это можно сделать наиболее простым образом? Установить вместо одно коммутатора два и подключить каждый сегмент к своему коммутатору. Но это требует покупки нового оборудования и, возможно, прокладки новых кабельных сетей, поэтому нам на помощь приходит технология VLAN. Давайте рассмотрим, как работает коммутатор с виртуальными сетями. В нашем примере мы возьмем условный 8-портовый коммутатор и настроим на нем три порта на работу с одним VLAN, а еще три порта с другим. Каждый VLAN обозначается собственным номером, который является идентификатором виртуально сети. Порты, которые не настроены ни для какого VLAN считаются принадлежащими Native VLAN, по умолчанию он обычно имеет номер 1 (может отличаться у разных производителей), поэтому не следует использовать этот номер для собственных сетей. Порты, настроенные нами для работы с VLAN, образуют как-бы два отдельных виртуальных коммутатора, передавая кадры только между собой. Каким образом это достигается? В порт, принадлежащий определенному VLAN, могут быть отправлены только пакеты с тегом, принадлежащим этому VLAN, остальные будут отброшены. Фактически мы только что разделили единый широковещательный домен на несколько меньших и трафик из одного VLAN никогда не попадет в другой, даже если эти подсети будут использовать один диапазон IP. Для конечных узлов сети такой коммутатор нечем ни отличается от обычного. Вся обработка виртуальных сетей происходит внутри. Такие порты коммутатора называются портами доступа или нетегированными портами (access port, untagged). Обычно они используются для подключения конечных узлов сети, которые не должны ничего знать об иных VLAN и работать в собственном сегменте. А теперь рассмотрим другую картину, у нас есть два коммутатора, каждый из которых должен работать с обоими VLAN, при этом соединены они единственным кабелем и проложить дополнительный кабель невозможно. В этом случае мы можем настроить один или несколько портов на передачу тегированного трафика, при этом можно передавать как трафик любых VLAN, так и только определенных. Такой порт называется магистральным (тегированным) или транком (trunk port, tagged).
Так как кадр 802.1Q отличается от обычного Ehternet-кадра, то работать с ним могут только устройства с поддержкой данного протокола. Если на пути тегированного трафика попадется обычный коммутатор, то такие кадры будут им отброшены. В случае доставки 802.1Q кадров конечному узлу сети такая поддержка потребуется от сетевой карты устройства. Если на магистральный порт приходит нетегированный трафик, то ему обычно назначается Native VLAN.
Все кадры, попадающие с порта доступа в коммутатор, получают тег с VLAN ID 40 и могут покинуть коммутатор только через порты, принадлежащие этому VLAN или транк. Таким образом любые широковещательные запросы не уйдут дальше своего VLAN. Получив ответ узел сети формирует кадр и отправляет его адресату. Далее в дело снова вступают коммутаторы, сверившись с MAC-таблицей они отправляют кадр в один из портов, который будет либо принадлежать своему VLAN, либо будет являться магистральным. В любом случае кадр будет доставлен по назначению без использования маршрутизатора, только через коммутаторы. Совсем иное дело, если узел одного из VLAN хочет получить доступ к узлу другого VLAN. В нашем случае узел из красной сети (VLAN ID 30) хочет получить доступ к узлу синей сети (VLAN ID 40). Узел источник знает IP-адрес адресата и также знает, что этот адрес не принадлежит его сети. Поэтому он формирует IP-пакет на адрес основного шлюза сети (роутера), помещает его в Ethernet-кадр и отправляет на порт коммутатора. Коммутатор добавляет к кадру тег с VLAN ID 30 и доставляет его роутеру. Роутер получает данный кадр, извлекает из него IP-пакет и анализирует заголовки. Обнаружив адрес назначения, он сверяется с таблицей маршрутизации и принимает решение куда отправить данный пакет дальше. После чего формируется новый Ethernet-кадр, который получает тег с новым VLAN ID сети-получателя в него помещается IP-пакет, и он отправляется по назначению. Таким образом любой трафик внутри VLAN доставляется только с помощью коммутаторов, а трафик между VLAN всегда проходит через маршрутизатор, даже если узлы находятся в соседних физических портах коммутатора. Говоря о межвлановой маршрутизации нельзя обойти вниманием такие устройства как L3 коммутаторы. Это устройства уровня L2 c некоторыми функциями L3, но, в отличие от маршрутизаторов, данные функции существенно ограничены и реализованы аппаратно. Этим достигается более высокое быстродействие, но пропадает гибкость применения. Как правило L3 коммутаторы предлагают только функции маршрутизации и не поддерживают технологии для выхода во внешнюю сеть (NAT) и не имеют брандмауэра. Но они позволяют быстро и эффективно осуществлять маршрутизацию между внутренними сегментами сети, в том числе и между VLAN. Маршрутизаторы предлагают гораздо большее число функций, но многие из них реализуются программно и поэтому данный тип устройств имеет меньшую производительность, но гораздо более высокую гибкость применения и сетевые возможности. При этом нельзя сказать, что какое-то из устройств хуже, каждое из них хорошо на своем месте. Если мы говорим о маршрутизации между внутренними сетями, в том числе и о межвлановой маршрутизации, то здесь предпочтительно использовать L3 коммутаторы с их высокой производительностью, а когда требуется выход во внешнюю сеть, то здесь нам потребуется именно маршрутизатор, с широкими сетевыми возможностями. Помогла статья? Поддержи автора и новые статьи будут выходить чаще: Или подпишись на наш Телеграм-канал: Сети для самых маленьких. Часть вторая. КоммутацияПосле скучного рассказа о подключении к кошкам переходим к настройке сети. В этот раз темы будут для новичков сложные, для старичков избитые. Впрочем сетевым аксакалам едва ли удастся почерпнуть что-то новое из этого цикла. Итак, сегодня: Перед тем, как вы обратитесь к практике, настоятельно рекомендуем почитать нулевую часть, где мы всё спланировали и запротоколировали. ТеорияДля начала необходимо определится с определениями и детерминировать терминологию. В начале пути с этим могут быть трудности, несмотря на горы википедии и прорву технических статей. И последнее, что хотелось бы отметить в связи с ЛВС — это IP-адресация. Дело в том, что все IP адреса делятся на приватные (private, он же внутренний, “серый”, локальный), и публичные. Публичные используются в интернет, каждый адрес уникален, их распределение контролирует организация IANA(Internet Assigned Numbers Authority). Приватные используются для адресации хостов (ну, строго говоря, не хостов, а интерфейсов) внутри ЛВС, их распределение никто не контролирует. Для них выделили три диапазона адресов (по одному из каждого класса): 10.0.0.0 — 10.255.255.255
Это те адреса, которые вы можете использовать в своей частной сети. Они вполне могут повторяться (и повторяются) в разных локальных сетях, и за её пределы они не выходят. Приватный адрес на то и приватный, поэтому любой пакет с адресом из диапазонов, указанных выше, попавший к провайдеру, будет отбрасываться. Если вернуться к нашей старой схеме то вы увидите, что для своей сети мы выбрали приватные адреса из диапазона 172.16.0.0 — 172.31.255.255. Ещё раз: у нас есть три способа разграничить широковещательные домены: Ну и самая жесть, которой часто сторонятся начинающие: OSI. Open System Interconnection. Вообще в двух словах, чтобы мозг не захламить за одно занятие. Эту модель называют эталонной, потому что в реальном мире дело не дошло до реализации. Но она само совершенство, поэтому инженеры и админы вворачивают это слово повсюду. Payload — это полезная нагрузка — данные сетевого уровня, которые вкладываются (инкапсулируются) в кадр. MAC Header (Заголовок) — это служебная информация канального (второго) уровня. Самые важные пока для нас элементы — это source MAC-address (адрес отправителя кадра) и Destination MAC-address (адрес получателя кадра). Третий уровень — сетевой (IP, ARP)
Сегодня мы акцентируемся на 1-м и 2-м уровнях, особенно на втором. Третьего и четвертого коснёмся в следующих выпусках. Теперь проследим нелёгкий путь кадра. Вы пытаетесь пропинговать, например, адрес соседнего компьютера командой ping 192.168.1.118. Данные этого приложения показаны фиолетовым параллелепипедом. За это отвечает протокол ICMP. В него инкапсулируется информация от приложения — это означает, что к данным 5-го уровня добавляется заголовок со служебной информацией 4-го уровня. Его данные упаковываются (инкапсулируются) в IP-пакеты, где в заголовке указан IP-адрес получателя (192.168.1.118) и IP-адрес отправителя — логические адреса. А затем всё это инкапсулируется в Ethernet-кадры с MAC-адресами отправителя и получателя — физическими адресами. При формировании кадров в заголовке в качестве MAC-адреса источника (source) подставляется адрес вашего компьютера, а адресом получателя (destinantion) будет MAC-адрес компьютера — владельца IP-адреса 192.168.1.118 (о механизмах такого преобразования поговорим в следующий раз). То есть если бы вы смогли сфотографировать кадр, то вы бы увидели все эти данные в разрезе, так сказать. На самом деле, нет ничего проще: запускаете какой-нибудь анализатор трафика, например, замечательный Wireshark и Ethereal, на своём компьютере и пингуете другой хост. Вот такую картину вы сможете лицезреть: Вы это можете сделать прямо сейчас, читая эти строки, просто установив и запустив анализатор трафика. В последнюю очередь сетевая карта вашего компьютера дробит фрейм на биты и отправляет их в кабель. Коммутатор из поступивших битов собирает первоначальный кадр Далее начинается интеллектуальный труд: из заголовка извлекается адрес получателя, перетрясается таблица MAC-адресов на предмет совпадения и, как только оное найдено, кадр без изменений отправляется в указанный порт. Если же адреса пока ещё нет или кадр пришёл широковещательный, то он направляется на все порты, кроме того, откуда пришёл. Если адреса отправителя в таблице до сих пор не было, то в этот момент коммутатор добавит его. Конечный хост, получив поток битов, собирает из них кадр, ещё только предполагая, что он предназначается ему. Далее он сравнивает MAC-адрес получателя со своим и, если они совпадают, то заголовок второго уровня отбрасывается, а IP-данные передаются на обработку вышестоящему протоколу. Если адреса не совпадают, то кадр отбрасывается вместе со всем содержимым.
Конечный хост обработал ICMP-запрос (echo-request) и готов послать ICMP-ответ (echo-reply) вашему компьютеру с адресом 192.168.1.131 и далее пункты 1-3 повторяются уже для нового кадра То, о чём мы писали до сих пор — это принцип работы любого коммутатора. Так делают даже простые длинки за 300 рублей. Ну а теперь, давайте, коллеги, финальный рывок: добавим сюда ещё VLAN’ы. С ними работают уже только управляемые коммутаторы. Что же именно происходит на кухне коммутации?
Каждый коммутатор принимает теперь решение на основе этой метки-тега (или его отсутствия). Существует два типа портов: 2. Trunk port. У этого порта два основных применения — линия между двумя коммутаторами или от коммутатора к маршрутизатору. Внутри такой линии, называемой в народе, что логично, транком, передаётся трафик нескольких вланов. Разумеется, тут трафик уже идёт с тегами, чтобы принимающая сторона могла отличить кадр, который идёт в бухгалтерию, от кадра, предназначенного для ИТ-отдела. За транковым портом закрепляется целый диапазон вланов. Что происходит в сети с вланами? 1) Итак, от вашего компьютера с IP-адресом, например, 192.168.1.131 отправляется пакет другому компьютеру в вашей же сети. Этот пакет инкапсулируется в кадр, и пока никто ничего не знает о вланах, поэтому кадр уходит, как есть, на ближайший коммутатор. Это означает, что любой кадр, пришедший на этот интерфейс, автоматический тегируется: на него вешается ленточка с номером VLAN’а. В данном случае с номером 2. Попробуем провести аналогию с реальными миром. Вы с другом, например, пакеты-туристы и летите отдыхать дикарями самолётом авиалиний Ethernet Airlines. Но по дороге вы поссорились, и потому, когда в аэропорту назначения, вас спрашивают в какую гостиницу вас везти, вы отвечаете “Рога”, а ваш товарищ говорит “Копыта”. И сразу после этого вас инкапсулируют в разные кадры-машины: вас в такси с тегом “Таксопарк “На рогах”, а вашего товарища с его грузом в КамАЗ с тегом “Транспортная компания “В копыто”. Теперь вам нельзя на автобусные полосы, а вашему другу под знаки, запрещающие проезд грузовиков. Q: Что произойдёт, если тегированный кадр прилетит на access-порт? Q: Что произойдёт, если нетегированный кадр прилетит на trunk-порт? Q: Можно ли конечным узлам (компьютерам, ноутбукам, планшетам, телефонам) отправлять тегированные кадры и соответственно подключать их к транковым портам? Q: Что будет с тегированными кадрами, если они попадут на обычный неуправляемый коммутатор или другое устройство, не понимающее стандарт 802.1q? Практика. Настройка сети “Лифт ми Ап”Ну и наконец-то обратимся к настройке. Вива ля практис! Будет у нас такая сеть: Мы могли бы сейчас броситься сразу настраивать всё по порядку: полностью одно устройство, потом другое. Но так не будет, пожалуй, понимания значения процессов. Порты доступа (access)Поэтому начнём с простого: настроим два порта на msk-arbat-asw3 как access для влана 101 (ПТО): Все настройки делаем сразу в соответствии с планом. Заметили, что коммутатор ругается на отсутствие влана? Тут надо быть аккуратным. Некоторые версии ПО работают несколько нелогично. Теперь подключите компьютеры к портам FE0/1 и FE0/2, настройте на них адреса 172.16.3.2 и 172.16.3.3 с маской подсети 255.255.255.0 и шлюзом 172.16.3.1 и проверьте связь: После того, как это получилось, настроим порт FE0/16, как access, для 104-го влана (сеть других пользователей): Подключите к нему компьютер и настройте адрес из той же подсети, что ПТО, например, 172.16.3.5 с маской 255.255.255.0. То есть ещё раз, что происходит? От вашего компьютера приходит на 1-й порт широковещательный запрос: “Кто такой 172.16.3.5”, потому что сам компьютер пока не знает MAC-адреса получателя. Кадр, который несёт в себе этот запрос помечается, как принадлежащий 101-му VLAN’у в соответствии с портом, на который он поступил. И далее, чтобы узнать где-же находится компьютер 172.16.3.5, кадр рассылается на все порты-члены 101-го VLAN’а. А в их числе нет порта FE0/16, поэтому, естественно, этот адрес считается недостижимым, что приводит к ответу “Request timed out”. Внимание! Если в этом VLAN’е все-таки окажется устройство с таким IP, то это не будет тем же самым ноутбуком Other и при этом они не буду конфликтовать друг с другом, поскольку логически находятся в разных широковещательных доменах. Транковые порты (trunk)Итак, врата для вас открылись, теперь вам предстоит создать коридор — транк между тремя коммутаторами: msk-arbat-asw3, msk-arbat-dsw1 и msk-rubl-asw1. Uplink портом на msk-arbat-asw3 является GE1/1. Ну а поскольку нам всё равно все вланы нужно будет пробросить, то сделаем это сейчас, то есть помимо 101 и 104 пропишем 2, 102 и 103: На самом деле на интерфейсе достаточно команды #switchport mode trunk, чтобы у вас через этот порт уже пошли тегированные кадры всех вланов, потому что по умолчанию транковый порт пропускает всё. Но мы же инженеры, а не эникейщики. Где это видано, чтобы безлимит творился за нашей спиной? Поэтому через нас проходит только то, что мы разрешаем. Как только вы дали команду switchport trunk allowed vlan 101, через порт не пройдёт кадр никаких вланов, кроме 101 (VLAN 1 ходит по умолчанию и нетегированным). Внимание! Если вы хотите в транковый порт добавить ещё один влан, то вам необходимо использовать следующий синтаксис команды: В противном случае (написав switchport trunk allowed vlan 105) вы сотрёте все старые разрешения и добавите новый 105-й влан. И хорошо ещё, если при этом вы не потеряете доступ на этот коммутататор. Но за простой связи всё равно вы получите по пятое число) Переходим к msk-arbat-dsw1. На нём необходимо создать все вланы и настроить два порта: Ну и настроим, конечно, порты на msk-rubl-asw1: Снова нужно настроить вланы. И заметьте, при настройке транковых портов никаких сообщений нет. Если вы всё настроили правильно (в чём не приходится сомневаться), то с первого порта msk-rubl-asw1 вы увидите компьютеры ПТО, подключённые к msk-arbat-asw3. Для уверенности проверим ещё и 104-й влан. Через транк мы его сюда уже доставили. Подключаем компьютер к 16-му порт и настраиваем на нём IP-адрес 172.16.6.3 с маской 255.255.255.0 и шлюзом 172.16.6.1. А IP-адрес ноутбука на арбате поменяйте на 172.16.6.2 с теми же маской и шлюзом. Сеть управленияНастроим IP-адрес для управления. С msk-arbat-asw3 запускаем пинг до msk-arbat-dsw1: Первые пару пакетов могут потеряться на работу протокола ARP: определение соответствия IP-адрес — MAC-адрес. При этом MAC-адрес, порт и номер влана добавляются в таблицу коммутатора. Собственно вот и вся магия. Зачастую к подобного рода действиям и сводится вся настройка, если вы не работаете в провайдере. С другой стороны, если вы работаете в провайдере, то, наверняка, такие вещи вам объяснять не нужно. Ещё один небольшой инструмент, который может немного увеличить удобство работы: banner. Это объявление, которое циска покажет перед авторизацией на устройство. После motd вы указываете символ, который будет служить сигналом о том, что строка закончена. В это примере мы поставили “q”.
Для упорядочивания знаний по пунктам разберём, что вам необходимо сделать: 1) Настроить hostname. Это поможет вам в будущем на реальной сети быстро сориентироваться, где вы находитесь. 2) Создать все вланы и дать им название 3) Настроить все access-порты и задать им имя Удобно иногда бывает настраивать интерфейсы пачками: 4) Настроить все транковые порты и задать им имя: 5) Не забывайте сохраняться: Итого: чего мы добились? Все устройства в одной подсети видят друг друга, но не видят устройства из другой. В следующем выпуске разбираемся с этим вопросом, а также обратимся к статической маршрутизации и L3-коммутаторам. Здесь вы можете скачать конфигурацию всех устройств: P.S. Ещё раз хотим заметить, что при всём желании мы не сможем охватить все нюансы и тонкости, поэтому и не ставим перед собой такой задачи. Такие вещи, как принцип построения MAC-адреса, значения поля Ether Type или для чего нужен CRC в конце кадра, вам предстоит изучить самостоятельно. Спасибо соавтору этого цикла, хабравчанину thegluck. Читатели, не имеющие учётки на хабре, но имеющие вопросы, как и прежде, могут концентрировать их в ЖЖ.
|