Методом в контакте или методом в изоляции что это
Работы под напряжением в электроустановках: методы проведения работ, меры защиты
Эксплуатация электрических сетей, различных устройств, которые обеспечивают электроснабжение всех потребителей, требует как периодических испытаний и ремонтов, так и внеплановых. Наиболее сложной категорией, при этом, считается работа под напряжением. Сложность таких работ заключается в том, что персонал обязан выполнять все манипуляции не снимая напряжения, что, соответственно, повышает риск электротравматизма.
Определение
Работой под напряжением считается такой вариант обслуживания всей или только участка электроустановки, когда с нее не снимается рабочее напряжение, а ремонтные или испытательные операции осуществляются в штатном режиме работы электроустановки. Безопасность работников обеспечивается посредством приспособлений и инструмента из изоляционных материалов, которые призваны внести раздел в цепь между напряжением и землей. В зависимости от места расположения изоляции по отношению к человеку выделяют три метода выполнения работ под напряжением.
Методы проведения работ под напряжением
Методика работы под напряжением, в связи с угрозой поражения персонала электротоком, требует особой бдительности и неукоснительного соблюдения мер безопасности. Так как при замыкании частей электроустановки работником на землю начинается протекание электрического тока, то безопасное выполнение работ может обеспечиваться при условии, что человек будет изолирован от земли, или только от токоведущих частей, или и от того, и от другого одновременно.
Изоляция человека от земли
Один из вариантов работы под напряжением – выполнить изоляцию рабочего от заземленных элементов. Наиболее часто применяется на контактной сети городского транспорта и железнодорожных предприятий, питающих линиях, осветительных приборах и т.д. При таком методе профиспытаний или ремонтов линий должно обязательно соблюдаться правило единого потенциала. Это означает, что все члены бригады, инструмент и рабочие площадки должны подводиться к тому же потенциалу, что и линия электропередач.
Рисунок 1: Изолированная вышка автомотрисы
Рассмотрите рисунок 1, здесь приведен пример устройства для изоляции работника на контактной сети т заземленной части. Это вышка автомотрисы, позволяющая работать без снятия напряжения.
На рисунке изображена сама вышка А, переходная площадка Б и изоляторы И. Для обеспечения безопасности вышка приравнивается к потенциалу провода посредством шунтирующей штанги. Это значит, что на нее подается напряжение контактной сети, которое автоматически переходит под ноги работника и человек находится в одном потенциале с токоведущими частями и рабочей площадкой. В то время, как изоляторы И отделяют их от земли и препятствуют протеканию тока, благодаря изоляторам цепь остается разомкнутой и обеспечивается безопасное выполнение работ под напряжением.
Переходная площадка Б в этой ситуации выступает в роли нейтрального элемента, который позволяет переходить с заземленной палубы автомотрисы на площадку, которая находится под напряжением. Направление движения человека показано синей линией. Технология перехода запрещает одновременное движение более одного человека при работе под напряжением. Один человек переходит сначала с палубы на площадку Б, а затем с нее на рабочую площадку А.
В случае аварийной ситуации (пробоя изолятора И, падения провода на землю, перекрытия изоляции площадки), персоналу ничего не будет угрожать. Так как при наличии шунтирующего элемента ток не будет протекать через работника.
В данном случае рассмотрен лишь частный способ выравнивания потенциалов. Но помимо него существуют и другие приспособления:
Все вышеперечисленные способы работ под напряжением должны выполняться только лицами, которые прошли проверку знаний отраслевых инструкций.
Изоляция человека от токоведущих частей, при этом, не изолируя от земли
Такая работа под напряжением предусматривает, что работник будет находиться непосредственно на земле или на постоянно заземленной конструкции. А все манипуляции, которые он производит на распределительных устройствах или на линии обязательно выполняются при помощи электрозащитных средств. Они отделяют работника от тех элементов, которые находятся под напряжением и должны выбираться ответственным руководителем в соответствии с классом напряжения, на который рассчитана электроустановка.
Примеры работ.
В качестве примера рассмотрите работу под напряжением по замене предохранителя, которая может производиться как для устройств до 1 кВ, так и свыше, в зависимости от ситуации.
Рисунок 2: Замена предохранителя под напряжением
Как видите на рисунке 2, показана работа под напряжением во время замены предохранителя в устройстве более 1 кВ. При этом работник обязан соблюдать такие требования безопасности:
Достаточно часто под напряжением выполняется замена предохранителей до 1 кВ в цепях управления, их оперативное удаление при проведении каких-либо плановых или аварийных работ. При этом меры безопасности отличаются от работ в цепях свыше 1 кВ – применять лицевой щиток не требуется, а клещи выбираются для определенного класса напряжения, и могут быть без ограничительных колец, но при этом обязательно применяется отделение человека от земли изолирующей подставкой, обувью или ковриком.
Еще одним примером может послужить работа оперативной штангой. При этом работник может без труда совершать какие-либо манипуляции с теми же однополюсными разъединителями и прочие операции.
Рисунок 3: Работа изолирующей штангой
Здесь, при техническом обслуживании электроустановок выше 1 кВ, применяются куда более жесткие меры безопасности. Согласно технологических карт работник обязан надеть диэлектрические перчатки и щиток. Проверить на изолирующей штанге работу вращающегося механизма. При выполнении манипуляций без отключения линии должен строго соблюдать положение рук относительно ограничительного кольца.
Еще один вариант – работа с указателем напряжения в сетях 6 — 110 кВ. Это устройство позволяет при отключении потребителя убедиться, что на токоведущих элементах отсутствует напряжение. Но предварительно, ремонтный персонал обязан проверить его на работоспособность, что осуществляется посредством прикосновения щупом к тем шинам или элементам, которые заведомо находятся под напряжением.
Рисунок 4: Опробование указателя напряжения
Как видите, на рисунке 4 показано касание щупом одной из шин переменного тока на фазе С, которое обозначено буквой А. В случае наличия напряжения в сигнализаторе Б будет видно горение лампы. Такая работа также выполняется в диэлектрических перчатках, обязательно соблюдается отметка ограничительного кольца.
Изоляция рабочего от токоведущих частей и земли
Данные работы под напряжением при эксплуатации электроустановок требуют выполнения специальных инструкций. Человек, в такой ситуации, подлежит одновременному ограждению изолирующими элементами и от земли, и от токоведущих частей. Следует отметить, что в различных видах работ изоляция от земли может выполняться с целью ограждения от шагового напряжения, а иногда выполняется, как дополнительная или основная преграда на пути протекания тока.
В качестве примера работы под напряжением в сетях до 1 кВ можно рассмотреть чистку панелей электрических двигателей под нагрузкой, испытания изоляторов и прочие.
Рисунок 5: Испытание исправности изолятора
Как видите, данная работа под напряжением выполняется с изолирующей съемной вышки (лейтера) Л. При такой манипуляции человек обязательно должен ограждаться от токоведущих частей, из-за того, что испытание одновременно задействует и токоведущую и заземленную часть изолятора. Персонал, при этом, пользует диэлектрические рукавицы и специальную штангу для измерения с целью оградить себя от напряжения. Но перчатки и штанга являются лишь дополнительными защитными средствами, а вот лейтер выполняет функции основного средства изоляции работника от земли.
Используемые в работе электрозащитные средства
Все защитные приспособления по своей способности обезопасить человека от вредного воздействия тока подразделяются на основные и дополнительные средства. Так, при работе в устройствах до 1 кВ те же перчатки будут выступать в роли основного, а вот в распределительных сетях выше 1 кВ, уже как дополнительное. Потому что в одиночку они не способны полностью устранить токи утечки или могут подвергнуться пробою. А вот диэлектрический коврик во всех случаях является исключительно дополнительным средством.
Посмотрите, в таблицах ниже приведено разделение средств защиты в соответствии с классом напряжения.
До 1000 В включительно | Свыше 1000 В | |||||||||||||||||||||||
Изолирующие штанги | Изолирующие штанги всех видов | |||||||||||||||||||||||
Изолирующие клещи | Изолирующие клещи | |||||||||||||||||||||||
Электроизмерительные клещи | Электроизмерительные клещи | |||||||||||||||||||||||
Указатели напряжения | Указатели напряжения | |||||||||||||||||||||||
Диэлектрические перчатки | Устройства для создания безопасных условий труда при проведении испытаний и измерений в электроустановках (указатели напряжения для фазировки, указатели повреждения кабелей и др.) | |||||||||||||||||||||||
Инструмент с изолирующим покрытием Таблица 2. Дополнительные электрозащитные средства для работы в электроустановках:
Обязательные требования к средствам защитыВ процессе эксплуатации защитные средства могут утрачивать свойства, обеспечивающие выполнение ними поставленных задач. Чтобы предотвратить какие-либо несчастные случаи, некоторые средства должны проходить периодические испытания и осмотры, а остальные только осмотры. Все процедуры фиксируются в соответствующих журналах, а информация о пригодности после испытания на самом средстве защиты. Перед началом работ ответственное лицо производит обязательную проверку пригодности изоляционного инструмента или средства. И в случае: изымает такие средства для ремонта и внеплановой проверки. Основные методы работ под напряжениемСхема выполнения работ под напряжением характеризуется способом обеспечения безопасности персонала, производящего работы, и видом (содержанием) технологических операций. В свою очередь, способ обеспечения безопасности зависит от факторов опасности и средств, которые могут быть использованы для защиты, а содержание технологических операций — от их целей, номинального напряжения и конструктивного выполнения ВЛ: расстояний, технического исполнения их элементов и физических характеристик. Безопасность электромонтера, работающего под напряжением, может быть достигнута применением изолирующих средств, обеспечивающих такое увеличение сопротивления электрической цепи провод — изоляция — человек — земля, чтобы ток, протекающий через человека, снизился до безопасных значений. Это требование распространяется как на изоляцию человека от тех элементов, на которых он производит работу, так и от других частей электроустановки, находящихся под напряжением. Необходимая изоляция достигается включением в указанную электрическую цепь элементов защиты, изготовленных из изоляционных материалов, либо созданием достаточного изоляционного расстояния по воздуху. Метод работы в контакте. Схема на рис. 24.1 иллюстрирует работу под напряжением на проводе нижней правой фазы ВЛ, при которой безопасность электромонтера обеспечивается применением для Если обозначить зону нормальных рабочих движений монтера (на рис. 24.1 заштрихована) через Д, то при работе в контакте в эту зону попадают все или некоторые провода линии напряжением до 1 кВ. Изоляция перчаток и инструмента должна превышать с определенным запасом напряжение элементов, на которых производятся работы. Поскольку в процессе работы в контакте на ВЛ электромонтер располагается на заземленных конструкциях опор, а в зону его дейст При выполнении работ под напряжением в других электроустановках, например в распределительных щитках 0,38 кВ, устройствах вторичных цепей, в качестве дополнительных защитных средств используются изолирующие коврики, а элементы, находящиеся под напряжением, либо отгораживаются экранами, либо закрываются изолирующими оболочками.
В тех случаях, когда выполнять работы в контакте с опоры ВЛ неудобно, электромонтер размещается в изолирующей кабине подъемника, которая также защищает его от касания к заземленным частям опоры и другим фазам линии. Метод работы на расстоянии. Работы на элементах линий, находящихся под напряжением, при которых изоляция электромонтера от этих элементов обеспечивается изолирующими штангами, классифицируются как работы на расстоянии.
При этом методе работ монтер может располагаться либо на опоре (рис. 24.2, б, г), либо в рабочей кабине подъемника (рис. 24.2, а, в). Длина изолирующей штанги должна перекрывать часть зоны нормальных рабочих движений электромонтера и наименьшее допустимое расстояние Р, определяемое как P = a + bИ где а — расстояние, учитывающее возможные непроизвольные движения работающего, м; b — коэффициент обеспечения безопасности; И — изоляционное расстояние, учитывающее напряжение пробоя и возможное перенапряжение в сети, м. Возможности применения методов работы в контакте и работы на расстоянии определяются характеристиками изолирующих защитных средств, расстояниями между проводами линии и между проводами и опорой, видом работы, подлежащей выполнению на линии. Так, выпуск изолирующих перчаток для применения в электроустановках до 35 кВ позволяет использовать метод работы в контакте для работ под напряжением на линиях (и других электроустановках) вплоть до 35 кВ. Наличие широчайшего ассортимента рабочих штанг-манипуляторов, снабженных различного рода инструментами, силовых штанг, поддерживающих трапов и крановых устройств, устанавливаемых на опорах, дало возможность применять метод работы на расстоянии практически на линиях всех классов напряжения — от 6 до 750 кВ. Бесспорно, что наряду с имеющимися возможностями использования разнообразных приспособлений, предназначенных для работ на расстоянии, расширению области применения этого метода способствует соответствующая подготовка персонала. Целесообразно, по возможности, использовать на линиях различных классов одинаковую схему работ. Анализ применения двух рассмотренных методов работ под напряжением и последовательности развития технологий свидетельствуют о том, что чем ближе объект ремонта (узел, элемент линии) находится к работающему, тем удобнее и в целом быстрее выполняется работа. Не случайно поэтому широкое распространение в практике получили комбинации схем работ под напряжением и сочетания работ под напряжением с обычными методами. В качестве примеров такого сочетания служат схемы работ с отведением провода, находящегося под напряжением, от опоры с помощью штанг (работа на расстоянии) и последующим проведением работы по замене изолятора на опоре вдали от напряжения. Метод работы на потенциале. В схеме работ провод — (человек) — изоляция — земля защита электромонтера от протекания по нему тока, значение которого превышает порог чувствительности, осуществляется шунтированием пути протекания тока через человека путем выравнивания потенциала провода, находящегося под рабочим напряжением, и потенциала рабочего места, на котором размещается электромонтер, с одновременным применением надежной изоляции рабочего места от земли или заземленных элементов опоры (рис. 24.3). При этом от воздействия электрического поля электромонтер защищается электропроводящим комплектом спецодежды, образующим клетку Фарадея, внутри которой действие поля сведено к минимуму. На рис. 24.4 приведены схемы емкостных связей и путей протекания тока при работе человека на изолирующей площадке до переноса потенциала (рис. 24.4, а) и после переноса потенциала провода на рабочую площадку (рис. 24.4, б). Предотвращение приближения электромонтера, работающего по методу работы на потенциале, к заземленным частям опоры достигается сохранением достаточных расстояний от работающего до опоры. Метод работ на потенциале обеспечивает (как и работа в контакте) удобство выполнения технологических операций монтером, находящимся в непосредственной близости к ремонтируемому элементу. Поэтому на практике применение этого метода, в особенности на линиях сверхвысокого напряжения со значительными расстояниями между фазами, большой массой элементов изолирующих подвесок и арматуры, а также при работах на натяжных гирляндах, имеет существенные преимущества перед работой на расстоянии со штангами. Основные методы работ под напряжением реализуются в практике эксплуатации в виде различных технологий на линиях электропередачи и других электроустановках всех классов напряжения. Выполнение работ под напряжением в электроустановках разных классов напряжения: методы, средства защиты
Данная линия является очень ответственной и может питать значительную часть энергосистемы в пределах нескольких областей страны. Если в данный момент нет возможности запитать энергосистему от резервной линии, то единственным вариантом устранения неисправности является выполнение работ под напряжением, то есть без предварительного отключения линии электропередач. Также работа под напряжением в электроустановках рассматривается как один из современных методов обслуживания электроустановок. Вывод участков электроустановок, в частности воздушных линий электропередач – это достаточно трудоемкий процесс, особенно если это очень важная магистральная линия, отключение которой невозможно согласовать в течение года. В данном случае проведение ремонтных или профилактических работ без снятия напряжения значительно экономит время, требуемое на согласование производимых работ и выполнения мероприятий по выводу в ремонт линии электропередач. Рассмотрим методы проведения работ под рабочим напряжением электроустановки и соответствующие каждому методу средства защиты ремонтного персонала от поражения электрическим током. Электрическое напряжение – это разность потенциалов. Поэтому во избежание удара электрическим током перед тем, как приступить к выполнению работ, необходимо произвести выравнивание потенциала экранирующего комплекта и рабочей площадки с токоведущими частями, которые находятся под напряжением. Для выравнивания потенциала изолированная рабочая площадка соединяется с токоведущей частью (проводом, шиной) гибким медным проводником, который крепится при помощи специального зажима изолирующей штангой. Заземленные части металлоконструкций, опор имеют потенциал, отличный от потенциала токоведущих частей, приближение к ним приводит к удару человека электрическим током. Поэтому для обеспечения безопасности при выполнении работ под потенциалом провода человеку нельзя приближаться к заземленным частям ближе величины допустимого расстояния, которое определено для данного класса напряжения линии. Например, если выполняются работы на линии напряжением 330кВ, то человеку, работающему под потенциалом провода, запрещается приближаться к металлоконструкциям опор на расстояние менее 2,5 м. В связи с повышенной опасностью при проведении работ по данному методу, работники должны проходить специализированное обучение, проверку знаний по методике проведения работ под напряжением. На каждый вид работ составляются инструкции, а при планировании работ составляются специальные технологические карты. Существуют электрозащитные средства напряжением до и выше 1000 В, которые в свою очередь делят на основные и дополнительные. Основные защитные средства осуществляют защиту человека от действия электрического напряжения и дуги, они позволяют работать длительное время под рабочим напряжением участка электроустановки. Дополнительные защитные средства не позволяют работать под рабочим напряжением, они являются дополнительной защитой к основным электрозащитным средствам, позволяют защитить работника от шагового напряжения и напряжения прикосновения. Данный способ выполнения работ под напряжением является наиболее распространенным в электроустановках. Одним из примеров является проверка наличие напряжения на линии или проверка работоспособности указателя напряжения в электроустановках напряжением выше 1000 В. Сам указатель напряжения является основным электрозащитным средством. Пользоваться указателем напряжением выше 1000 В следует в диэлектрических перчатках – в данном случае они выступают в роли дополнительного электрозащитного средства. Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта! Подписывайтесь на наш канал в Telegram! Просто пройдите по ссылке и подключитесь к каналу. Не пропустите обновления, подпишитесь на наши соцсети:
|